
Shedding Light on Software Engineering-specific
Metaphors and Idioms

Mia Mohammad Imran
Virginia Commonwealth University

Richmond, Virginia, USA
imranm3@vcu.edu

Preetha Chatterjee
Drexel University

Philadelphia, Pennsylvania, USA
preetha.chatterjee@drexel.edu

Kostadin Damevski
Virginia Commonwealth University

Richmond, Virginia, USA
kdamevski@vcu.edu

ABSTRACT
Use of figurative language, such as metaphors and idioms, is com-
mon in our daily-life communications, and it can also be found in
Software Engineering (SE) channels, such as comments on GitHub.
Automatically interpreting figurative language is a challenging task,
even with modern Large Language Models (LLMs), as it often in-
volves subtle nuances. This is particularly true in the SE domain,
where figurative language is frequently used to convey technical
concepts, often bearing developer affect (e.g., ‘spaghetti code’). Sur-
prisingly, there is a lack of studies on how figurative language in SE
communications impacts the performance of automatic tools that
focus on understanding developer communications, e.g., bug prior-
itization, incivility detection. Furthermore, it is an open question to
what extent state-of-the-art LLMs interpret figurative expressions
in domain-specific communication such as software engineering. To
address this gap, we study the prevalence and impact of figurative
language in SE communication channels. This study contributes
to understanding the role of figurative language in SE, the poten-
tial of LLMs in interpreting them, and its impact on automated SE
communication analysis. Our results demonstrate the effectiveness
of fine-tuning LLMs with figurative language in SE and its poten-
tial impact on automated tasks that involve affect. We found that,
among three state-of-the-art LLMs, the best improved fine-tuned
versions have an average improvement of 6.66% on a GitHub emo-
tion classification dataset, 7.07% on a GitHub incivility classification
dataset, and 3.71% on a Bugzilla bug report prioritization dataset.

ACM Reference Format:
Mia Mohammad Imran, Preetha Chatterjee, and Kostadin Damevski. 2023.
Shedding Light on Software Engineering-specific Metaphors and Idioms. In
Proceedings of 46th International Conference on Software Engineering (ICSE
2024). ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 INTRODUCTION
Figurative language is the use of words or phrases in a way that
deviates from their literal meaning, aiming to evoke specific con-
cepts or imagery within one’s imagination [13]. Figurative language

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE 2024, April 2024, Lisbon, Portugal
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM…$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

consists of different types [53], such as metaphors, which use com-
parisons to describe something differently (e.g., “the road ahead is
a long and winding journey”); idioms, which are common phrases
that have alternate meanings (e.g., ‘to beat around the bush’); sim-
iles, which use ‘like’ or ‘as’ to compare two things (e.g., ‘as light
as a feather’); and personification, which gives human qualities to
objects or animals (e.g., ‘the leaves danced in the wind’).

Within the software engineering (SE) community, professionals
often employ various distinctive figurative expressions that are not
commonly used in everyday discourse. For instance, developers
utilize the metaphorical term ‘anti-pattern’ to communicate the idea
of a recurring problem that should be avoided [89]. Idioms, another
frequently employed form of figurative expression, play a crucial
role in SE communication by succinctly and colloquially conveying
common ideas or concepts. An example of this is when developers
describe poorly written code as ‘spaghetti code’, implying that it is
convoluted and challenging to comprehend [107].

Just as humans use phrases like ‘boil’ with anger or ‘a breath of
fresh air’ for relief [71], developers might say ‘a thorn in my side’ [9]
to express persistent annoyance or difficulty with an API or a fea-
ture. Use of pejorative terms like ‘garbage code’ [5] can be indicators
of severe negative emotions, leading to toxic discussions. Therefore,
understanding the use of figurative language in software develop-
ment discourse can help detect the use of offensive language [41]
and provide valuable insights into the overall health of a software
project [48]. Developers also use figurative expressions to indicate
the impact and severity of a bug. For instance, while expressions
like ‘a ticking time bomb’ [10], suggests significant future problems,
‘showstopper’ [4] and ‘critical roadblock’ [3], emphasize the urgency
of addressing the bug at the present. Recent studies highlighted
that flaws in SE emotion and sentiment detection tools often stem
from the use of figurative language [35, 65, 91, 93]. On a Stack
Overflow and GitHub dataset, Novielli et al. [93] found that 9% of
the errors in sentiment analysis were due to figurative language,
noting that it poses an open challenge for sentiment detection in
software engineering.

Despite its potential impact on the performance of automatic
tools focused on understanding SE text, there have been very lim-
ited studies on analyzing figurative language in SE, e.g., there have
been some studies on SE synonyms [32, 33] and programming
language-specific idioms [19]. In this paper, we aim to go beyond
the synonyms and explore the broader landscape of figurative lan-
guage in SE.We aim to ‘shed light on’ or analyze the use of figurative
language (specifically, metaphors and idioms) in SE communica-
tion channels and contribute to the understanding of how recently
proposed language models that target software-related text can be
made to recognize figurative expressions.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ICSE 2024, April 2024, Lisbon, Portugal Mia Mohammad Imran, Preetha Chatterjee, and Kostadin Damevski

Large Language Models (LLMs), such as BERT [69] and
RoBERTa [79], have recently demonstrated state-of-the-art results
on a variety of software engineering tasks, e.g., code completion,
code review, bug localization, sentiment analysis, toxicity detec-
tion [37, 38, 76, 103, 104, 122]. While LLMs are not explicitly de-
signed to detect figurative languages like metaphors and idioms,
they can acquire this ability through training on large datasets such
as Wikipedia and Stack Overflow [25, 51, 106, 109]. This capabil-
ity is particularly beneficial in the software engineering context,
as it enables a more nuanced and accurate analysis of developer
communications. Without this ability, an LLM may misinterpret
or misclassify text, leading to erroneous results. For instance, if
an LLM cannot recognize the idiom ‘edge case’, it may interpret
the phrase literally and erroneously categorize the text as being
related to a specific type of physical boundary instead of grasping
its figurative meaning of a rare or unusual scenario.

Through this study, we will examine the relevance of figurative
language in GitHub communication channels, the ability of LLMs
to detect figurative language in the SE context, and the impact of
figurative language on affect analysis and bug report priority detec-
tion. By gaining a deeper understanding of the role and effects of
figurative language in SE, we aim to contribute to the development
of more effective and accurate NLP-based systems for SE tasks,
specifically in automated recognition of developer emotions and
incivility on GitHub, and bug report priority detection. We focus
on answering the following three research questions:

RQ1: How well can existing LLMs interpret figurative language (i.e.,
metaphors and idioms) used in software engineering?
To answer this RQ, we collect a set of 2000 sentences contain-
ing figurative language and create rephrased sentences, i.e., sen-
tences with similar meanings but without figurative expressions.
We also create altered sentences that share as many words as
the original sentence but convey different meanings, e.g., using
metaphors in their literal sense or using idioms in a different con-
text other than software engineering. This procedure of creating, so
called, entailed and non-entailed text from premise text has been
widely used in NLP [23, 24, 108]. Using this data triple of original,
rephrased, and altered meaning sentences, we investigate whether
LLMs can recognize the semantics of figurative sentences by com-
puting how often the models identified the semantic dissimilarity
of the rephrased sentence with the altered sentence. Our results
suggest that LLMs have a limited ability to interpret figurative lan-
guage, with higher performance for general figurative expressions
than software engineering-specific ones.

RQ2: Can the performance of software engineering-specific affective
analysis be improved by a better insight into figurative language?
Affect expressions are the means to convey emotions, feelings, and
attitudes to others [85]. For some time now, researchers have been
exploring automatic affect analysis, which encompasses tasks such
as emotion analysis, sentiment analysis, and incivility analysis. To
answer RQ2, we fine-tune several LLMs using contrastive learn-
ing [74] with our dataset of figurative language in order to improve
their ability to interpret figurative language. We then compare the
performance of the fine-tuned LLMs to the original models of two
publicly available affect datasets: an emotion dataset curated from

GitHub, and an incivility dataset curated from GitHub. Our results
indicate that fine-tuned LLMs perform better in both cases.

RQ3: Can a better understanding of figurative language enhance
software engineering automation where affect plays a role?
A number of research tasks in SE indirectly involve affective natural
language text, e.g., app review analysis, opinion mining [31, 75].
Specifically, in this RQ we investigate how a better understanding
of figurative language can impact bug report priority detection,
which is a significant area of interest in open-source software re-
search [114–116, 118]. Umer et al. observed that emotions influence
bug report priority detection [116]. To address this problem, re-
cently researchers have employed Language Models (LLMs) [118].
In this study, we explore LLMs fine-tuned with contrastive learning
using our figurative language dataset, similar to the approach in
RQ2, and conducted experiments on the publicly available Bugzilla
dataset [6]. Our results indicate that fine-tuning with our figurative
language dataset improves bug report priority detection.

We publish the annotation instructions, annotated dataset, and
source code to facilitate the replication of our study at https://
anonymous.4open.science/r/SE-Figurative-Language-1586.

2 DATASET
To conduct our study, we curate a dataset of developer communi-
cations containing figurative language. Towards that goal, we first
collect data from GitHub issues and pull requests and identify the
occurrences of idioms and metaphors. To inquire whether language
models understand figurative language, we manually rephrase the
original sentences containing figurative language to generate: 1)
sentences that are similar in meaning to the original but do not
contain idioms or metaphors; and 2) sentences that contain simi-
lar words as the original sentences but are semantically dissimilar,
i.e., have a different meaning. In this section, we detail each step
involved in constructing our dataset.

2.1 Data Collection
We selected nine popular GitHub repositories, each with a min-
imum of 50k stars: skylot/jadx, laravel/laravel, microsoft/Power-
Toys, rails/rails, redis/redis, facebook/react, tensorflow/tensorflow,
huggingface/transformers, and microsoft/vscode. We collected 10k
comments from each repository (5k PR comments and 5k issue
comments) between February 2022 and May 2023. We split the com-
ments into sentences using NLTK [15] and filtered out sentences
with fewer than 5 words, resulting in a total of 202k sentences.

One of our study’s end goals is to examine figurative language’s
impact on affective expressions in a software engineering context.
Previous research has shown that most comments on GitHub are
neutral, lacking any detectable emotions or sentiments [87]. There-
fore, we excluded neutral sentences by using a software engineering-
specific sentiment analysis tool [21].

In addition, to avoid including sentences that do not contain
any figurative expressions, we applied a popular metaphor detec-
tion [109] and an idiom detection tool [51] to identify candidate
metaphors and idioms in each sentence. This model-in-the-loop
approach is popular in Natural Language Inference (NLI) research,
e.g., figurative language interpretation [27, 90], as it maximizes
the value of annotation effort, which requires tedious human labor.
We discarded sentences that do not contain any candidate idioms

https://anonymous.4open.science/r/SE-Figurative-Language-1586
https://anonymous.4open.science/r/SE-Figurative-Language-1586

Shedding Light on Software Engineering-specific
Metaphors and Idioms ICSE 2024, April 2024, Lisbon, Portugal

or metaphors. We randomly selected 1000 sentences containing
metaphors from the remaining sentences. We also randomly chose
1000 sentences containing idioms (different from the metaphor set).
This process resulted in a dataset of 2000 sentences.

2.2 Data Annotation
First, we recruited four annotators (two graduate students and two
senior undergraduate students) who were each given 500 sentences
to annotate (250 with metaphors and 250 with idioms). Due to
the nature of the task and difficulties with crowd-sourcing [24],
we opted for a small number of annotators that are native speak-
ers/professionally fluent in English with a strong computer science
background. Along with the 2000 sentences in total, the annota-
tors were provided with a set of candidate figurative expressions
marked by the above-mentioned tools. We instructed them to: 1)
verify the candidates as metaphors or idioms and judge whether
each metaphor or idiom is specific to software engineering or gen-
eral purpose; and 2) create rephrased sentences from the original.
We also held a short training session in which we reviewed the
annotation process for a few representative examples with each
annotator. Below, we describe these data annotation steps in detail
(see also Figure 1).
2.2.1 Verifying Figurative Expressions For verifying metaphors
and idioms, we followed best practices from existing literature.
More specifically, to verify the metaphors we asked the annota-
tors to carefully read the Metaphor Identification Procedure (MIP)
guideline by the Pragglejaz Group [59]. The MIP guideline is a well-
known procedure for identifying metaphors. Based on the guideline,
the annotators marked the correct metaphoric expressions from the
candidate set. For example, the annotators confirmed that ‘nasty
bug’ is a valid metaphor for a difficult fault in the sentence, “Other-
wise, this could give us a nasty bug.”

We noted in the annotation instructions that most metaphors
are conventional, i.e., metaphors that are often used in everyday
language [42]. For example, in the following sentence: “I see your
point”, ‘see’ and ‘point’ both aremetaphors [42]. Often such cases can
be observed in software engineering communication. For instance,
‘pinging’ in the following sentence is a metaphor: “Hi @[USER],
thanks for pinging me on this issue.” Here, ‘pinging’ is a colloquial
way of saying ‘contacting someone’, while the literal meaning of
‘pinging’ comes from computer networking terminology [1].

For verifying idioms, we followed the guideline provided by
Stowe et al. [108], which asked the annotators to look up idioms in
popular dictionaries (such as the Oxford English Dictionary [17],
the Webster Dictionary [14], and the Longman Dictionary of Con-
temporary English [13] and popular search engines (e.g., Google).
We instructed the annotators to consider an expression as likely
to be an idiom if its dictionary definition is: 1) applicable in the
context; and 2) a good syntactic fit in the same environment. For
example, in the sentence, “I will also be keeping an eye on you”,
‘keeping an eye’ is an idiom which means ‘to watch someone or
something or stay informed about the person’s behavior, especially to
keep someone out of trouble.’ [7] Conversely, when the meaning of
the candidate idiomatic expression is literal in the context of the
sentence and the dictionary definition is not applicable, it is likely
not to be an idiom. For example, in the sentence, “It was cold, so cold
in the jeep that it was with difficulty that Alexei kept his eyes open”,

There is a lot of back and forth on
the tennis court as the players are

trying to win points.

There is a lot of back and forth on a
PR, and the latest round seems

entirely like nits.

an exchange of views for
the purpose of exploring a

subject or deciding an
issue

There is a lot of conversation on a
PR, and the latest round seems

entirely like nits.

"back and forth"

Verified Idiom

Dictionary Definition

Figurative Sentence

conversation

Annotator Rephrase

EMS

DMS

Idiom Lookup Dictionary

Otherwise, this could result in a
dangerous bug infestation in your

garden.

Otherwise this could give us
a nasty bug.

dangerous error in code

Otherwise this could result in a
dangerous error in code.

"nasty bug"

Verified Metaphor

Annotator Definition

Figurative Sentence

EMS

DMS

MIP Guidelines

Figure 1: Figurative language annotation procedure.

‘kept his eyes open’ is not an idiom. Since software-specific words
have distinct meanings from conventional terms (e.g., bug, issue,
error, function), we supplied annotators with established software
engineering glossary terms from the FDA [2] and Google [11].

Once annotators verified the candidate set, we asked them to
markwhether the figurative expressions were software engineering-
specific or general-purpose.The annotators identified 752 sentences
with metaphors and 909 with idioms, totaling 1661 sentences. The
remaining 339 sentences did not contain any figurativewords.These
1661 sentences had a total of 1741 unique figurative expressions,
with 445 being SE-specific and 1296 general.
2.2.2 Rephrasing SentencesThe process of rephrasing sentences
was divided into two phases: creating semantically-equivalent
rephrased sentences and constructing altered-meaning sentences.
We refer to the semantically equivalent rephrased sentences as
Equivalent Meaning Sentence (EMS) throughout the paper. These
sentences retain the original meaning of the sentence, but the figu-
rative expressions are replaced with literal terms. We refer to the
altered-meaning sentences as Different Meaning Sentence (DMS).
These sentences are modified so that they significantly differ in
meaning from the original sentences.
a) EMS Construction: The annotators were tasked with rephrasing
each sentence on their list, i.e., removing the (verified) figurative ex-
pressions while maintaining the original semantics of the sentence
as much as possible. In other words, the replaced figurative expres-
sion should entail its literal counterpart. For example, in the sen-
tence, “[USER] Thanks for your help, what you said may be a hidden
bug.”, the figurative expression ‘hidden bug’ is replaced with ‘unseen
error’ resulting in the EMS: “[USER] Thanks for your help, what you
said may be an unseen error.” This approach is inspired by previous
research by Stowe et al. on figurative language in NLP [108]. It is
worth noting that for EMS we did not employ multiple annotators
to annotate the same set or calculate inter-annotator agreement
as Stowe et al. found that this method does not yield significantly
different quality compared to the conventional approach [108].

ICSE 2024, April 2024, Lisbon, Portugal Mia Mohammad Imran, Preetha Chatterjee, and Kostadin Damevski

b) DMS Construction: Different Meaning Sentences are variations of
metaphorical or idiomatic sentences that convey a different mean-
ing than the original sentence and do not entail it [108]. Two strate-
gies were employed to construct DMS: a) using figurative expres-
sions in a literal sense; and b) replacing the figurative expressions
and their context with different words. These strategies are inspired
by previous research on figurative language in natural language pro-
cessing [60, 108, 123]. We also apply a model-in-the-loop approach
for DMS generation [27, 90]. More specifically, we first generated
four candidate DMSs for each sentence, two each for each strat-
egy using GPT-4 [96] API (‘gpt-4’ [16]), and, second, we recruited
human annotators to select the best-generated candidate (or to
create one of their own if none is available).
Candidate DMS Generation. ChatGPT [96] has shown promising
results in data annotation tasks, including text generation, in some
cases outperforming human crowd-workers [52, 63, 112]. Following
recent literature, we create two GPT-4 prompts for the two different
strategies for DMS generation [63, 70]. The prompts were carefully
devised by using the existing literature on this topic [60, 108, 123].
The prompts for generating DMS are as follows:

Generating DMS by using the figurative language in a literal manner:

You are reading GitHub comments with figurative
expressions. Your task is to generate 2 examples by
using the given figurative expressions in a literal manner
to construct different sentences. Do not replace them.
Add/change new contexts if necessary. The new sentence
must have a completely different meaning than the
original. You must keep the semantic order of the original
sentences as much as possible. Don’t explain your answer.

Original Sentence:<insert utterance>.

Figurative expressions: <insert figurative expressions>

Generating DMS by replacing the figurative language:

You are reading GitHub comments with figurative
expressions. Your task is to generate 2 examples by
replacing given figurative expressions to construct
different sentences. The new sentence must have a
completely different meaning than the original. You are
only allowed to change the figurative expression and its
context. You must keep the semantic order of the original
sentences as much as possible. Don’t explain your answer.

Original Sentence:<insert utterance>.

Figurative expressions: <insert figuration expressions>

DMS Selection. Two additional annotators (one of the authors
and one senior undergraduate student) were responsible for the
candidate selection of the DMS. We provided the annotators the
original sentence, the figurative expressions, and the list of candi-
date DMSs with the following instructions: “You will be provided

with 4 candidate sentences, two of which come from Type 1 and two
come from Type 2. Choose the best 1 out of the 4 candidates, with
a preference towards choosing from Type 1. If none of these 4 are
good candidates, write None. When choosing, try to choose a sentence
that has 1) similar semantic order to the original sentence, and 2) a
different meaning than the original sentence.”

We instructed the annotators to write their ownDMSwhen their
selection is ‘None’. Once they completed an annotation pass over
the entire dataset, the two annotators met in person in order to
discuss the 310 cases where they disagreed (i.e., selected different
DMS candidates or ‘None’) and resolved them in order to achieve
100% agreement. This human-in-the-loop methodology helps with
the more difficult task of DMS generation, enhancing the over-
all quality and efficiency the process. The iterative resolution of
differences ensured a high quality of annotated data.

3 PREVALENCE OF SE-SPECIFIC FIGURATIVE
LANGUAGE

In order to understand if SE-specific figurative language appears
frequently in the wild, we examine the frequency of occurrence of
figurative language in a large sample of developer communication
on GitHub. More specifically, we collected 1,000 issue comments
and 1,000 pull request comments for each of the top 100 reposito-
ries by star count on GitHub, i.e., a total of 200k comments. We
analyzed comments made from September 1, 2022, to January 1,
2023, spanning 4 months, and excluded repositories with fewer
than 1,000 issue and pull request comments during this time. The
collected 200k comments were split into a total of 484k sentences
using NLTK [15]. Leveraging our annotated dataset consisting of
1741 unique figurative expressions (445 SE-specific and 1296 gen-
eral), we searched for matches in the set of 484k sentences after
applying standard NLP pre-processing (removing punctuation and
non-alphabet characters, and lemmatization using SpaCy) since
some of the figurative expressions have different spelling variations
(e.g., ‘root cause’, ‘root-cause’, and ‘root causes’). To ensure that the
matches were not spuriously identifying figurative language (due
to polysemy), we also executed the metaphor and idiom detection
tools [51, 109], the same ones that we use for candidates genera-
tion, selecting only the matches that were also confirmed by one
of these tools.

Of the examined 484k sentences, the 445 SE-specific figurative
expressions that annotators identified occurred in 44k sentences
(9%), while the 1296 general figurative expressions occurred in 107k
sentences (22%). Some sentences (2.67%) had both SE-specific and
general figurative expressions.

The distribution of general and SE-specific figurative expressions
in different GitHub repositories is shown in Figure 2a. SE-specific
figurative language does appear in non-trivial amounts in most
repositories we examined (i.e., in between 3.69% and 16.08% of
sentences), but much less often than general figurative expres-
sions, which occurred in between 13.2% and 38.62% of sentences.
In Figure 2b, we present the frequency of SE-specific figurative
expressions identified within our corpus of 200k GitHub comments.
Of the 445 SE-specific figurative expressions we investigated, 324
(72.8%) appear no more than 10 times, as indicated by the red
dotted line, suggesting that most such expressions are infrequent.
Among these, 193 expressions are absent from our dataset. This

Shedding Light on Software Engineering-specific
Metaphors and Idioms ICSE 2024, April 2024, Lisbon, Portugal

20 40 60 80 100
Repositories

0

10

20

30

40

Fig
ur

at
iv

e
Ex

pr
es

sio
ns

 (%
)

SE-specific
General

(a) Percent of sentences with figurative expressions in repos.

50 100 150 200 250 300324 350 400
SE-specific Figurative Expressions

100

101

102

103

Nu
m

. o
f S

en
te

nc
es

 (L
og

)

(b) Frequency of sentences with SE-specific figurative expressions.

Figure 2: Distribution of figurative language occurrence in
GitHub sentences (200k GitHub comments, 484k sentences).

absence can be attributed to two main factors: a) expressions that
are specific to particular projects (e.g., ‘ghost highlight’ and ‘ghost
monitor’ in UI-related projects); and b) unique expressions used to
describe highly specific scenarios (e.g., ‘dead fork,’ ‘magic code’).

Note that our study provides only a lower bound, as it matches
using an incomplete set of figurative language expressions. There-
fore, the likely presence of figurative language is even higher than
we report. This exploratory study highlights the importance of un-
derstanding figurative language in the SE context, as it can provide
insight into the daily communications of developers.

4 EXPERIMENTS AND DISCUSSION
Using the assembled dataset, we created specific experiments for
each of our three research questions. In this section, we describe
the experiments and discuss the corresponding results.

4.1 RQ1: How well can existing LLMs interpret
figurative language (i.e., metaphors and
idioms) used in software engineering?

In order to determine how well popular Large Language Models
(LLMs) understand metaphors and idioms, we examine whether
they can understand the semantic relationship between the original
sentence, the equivalent sentence (i.e., EMS), and the different-
meaning sentence (i.e., DMS). The task of differentiating EMSs from
DMSs of the original sentences can be thought of as Recognizing
Textual Entailment (RTE) [26]. RTE involves determining whether
a statement, called the hypothesis, can be inferred from a given
text, called the premise. In our context, the premise is the original
sentence, and the hypotheses are the EMS and DMS. We evaluate
whether an LLM can infer the EMS from the original sentence, and
if it is a DMS, the model should not deduce it.

LLM LLM

Sentence DMS

Mean Pooling Mean Pooling

Embedding
Vector (u)

Embedding
Vector (v)

Normalized (u) Normalized (v)

Cosine Similarity (u, v)

SimDMS

LLM LLM

Sentence EMS

Mean Pooling Mean Pooling

Embedding
Vector (u)

Embedding
Vector (v)

Normalized (u) Normalized (v)

Cosine Similarity (u, v)

SimEMS

SimEMS > SimDMS

LLM did not
interpret
 correctly

LLM interpreted
correctly Yes No

Figure 3: RQ1 evaluation pipeline.

One way to approximate the RTE task is to posit that the model
should recognize the original sentence as semantically closer to the
EMS than to the DMS. By comparing the embedding vectors of the
original sentence and the sentence in question, we can measure
whether the two sentences are similar or dissimilar and, therefore,
whether the most similar sentence is an EMS or a DMS.

4.1.1 Compared LLMsWe compare three LLMs – BERT [69],
RoBERTa [79], and ALBERT [73], which are popular in NLP and
SE tasks [20, 21, 81]. BERT [69] is a transformer-based model pre-
trained on extensive text data from Wikipedia and BooksCorpus.
RoBERTa [79] is an improved version of BERT, while ALBERT [73]
enhances efficiency through parameter reduction techniques. Addi-
tionally, we evaluate a popular SE-specific LLM – CodeBERT [46],
which is pre-trained on natural language - programming language
pairs. We use bert-base-uncased, roberta-base, albert-base-v2 and
microsoft/codebert-base available from HuggingFace [12].

4.1.2 ProcedureWe generate embedding vectors using each of
the LLMs for each pair of sentences, i.e., <original sentence, EMS>
and <original sentence, DMS>. Next, we compute the similarity
between the vectors in each pair and then compare the resulting
similarity scores [100]. We perform standard software engineer-
ing text-specific preprocessing operations such as URL removal,
username removal, stack trace removal, etc. [64]

Since the LLMs in our cohort produce word-level embedding
vectors, there are several possibilities for aggregating these into
sentence-level embedding vectors. Reimers et al. [100] noted that
mean pooling (the mean of all per-word output vectors generated
by the LLM) is one of the best strategies. While we opt for mean
pooling when generating each sentence’s embedding vector, we
also note that this strategy is still error-prone due to the anisotropy
problem, i.e., the difference in the scale of the embedding vec-
tors [45]. For this reason, we apply the normalization proposed

ICSE 2024, April 2024, Lisbon, Portugal Mia Mohammad Imran, Preetha Chatterjee, and Kostadin Damevski

Table 1: Percent of EMS with a higher similarity to the original sentence than corresponding DMS (Sim�"(> Sim�"().
Model SE-specific General Overall

Sim�"(> Sim�"(p-value |Cliff’s X | Sim�"(> Sim�"(p-value |Cliff’s X | Sim�"(> Sim�"(p-value |Cliff’s X |

BERT 84.51% ? < 0.01 0.629 87.40% ? < 0.01 0.638 86.57% ? < 0.01 0.637
RoBERTa 83.70% ? < 0.01 0.648 85.21% ? < 0.01 0.620 84.95% ? < 0.01 0.632
ALBERT 81.79% ? < 0.01 0.610 85.80% ? < 0.01 0.598 85.00% ? < 0.01 0.605
CodeBERT 77.99% ? < 0.01 0.498 79.63% ? < 0.01 0.493 79.11% ? < 0.01 0.495

by Yan et al. [121], which is based on Singular Value Transforma-
tion (SVT). SVT uses singular value decomposition and a threshold
using the soft-exponential function by Godfrey et al. [54]

Following normalization, we compute vector pair similarity with
the cosine similarity metric. Cosine similarity measures vector
alignment, with values from 1 (identical) to 0 (orthogonal) to -1
(opposite) [55]. Then, we compare the two similarities in order
to determine if the <original sentence, EMS> similarity (Sim�"()
is higher than the <original sentence, DMS> similarity (Sim�"().
Figure 3 summarises the entire procedure. To evaluate the RQ,
we compute the percentage of instances where Sim�"(is greater
than Sim�"(. We examine three sentence categories: a) those
containing SE-specific figurative language only (n=371); b) those
containing general figurative language only (n=1179); and c) overall,
containing either (a) and (b), or both (n=1661). For each model and
category, we measure the statistical significance of the difference
between the two cosine similarities using the one-tailed Wilcoxon
signed-rank test (i.e., testing if Sim�"(> Sim�"(with statisti-
cal significance). We apply the Benjamini-Hochberg correction
to control the false discovery rate. A small p-value (e.g., p-value <
0.05) indicates that the difference is unlikely to be due to chance
and that there is a statistically significant difference between the
two samples. We also compute the effect size, which measures
the magnitude of the difference between the two samples, using
Cliff’s Delta (X) [39], where |X | > 0.147, 0.33, and 0.474 indicate small,
medium, and large effects respectively.

4.1.3 Results and Discussion Table 1 shows the SE-specific, Gen-
eral, and Overall (i.e., combined) results. The higher the percentage
of <original sentence, EMS> pairs with larger cosine similarity, i.e.,
Sim�"(> Sim�"(, the better the model is at recognizing figurative
language. The results table shows that the BERT and RoBERTamod-
els have the highest percentage of correctly understood pairs for all
categories. BERT, RoBERTa, and ALBERT models correctly recog-
nize 84.51%, 83.70%, and 81.79% of sentences containing SE-specific
figurative expressions, 87.40%, 85.21%, and 85.80% of General fig-
urative expressions, and 86.57%, 84.95%, and 85.0% of the Overall
figurative expressions, respectively. In the case of CodeBERT, which
exhibits the poorest results out of all models, there is no significant
difference between SE-specific and General results (77.99% and
79.63% respectively). This is likely because the model is pre-trained
with programming-specific data enabling it recognize some soft-
ware engineering figurative language terms. However, it also likely
loses the ability to capture General figurative language, which is
present in the other LLMs. From this study, we observe that all
of the models can understand figurative language to a reasonable
degree (i.e., ranging between 77.99% to 87.40%).

This is also evident from p-value and Cliff’s |X |. In each case, the
statistically significant is with a p-value < 0.01 and a |X | greater

than 0.474 is considered a large effect for all models. The p-value
less than 0.01 indicates that the observed difference in similarity
between the two groups is highly unlikely to be due to chance
and we conclude that there is a statistically significant difference
in similarity between the two sets of sentence pairs. The large |X |
indicates that the similarity between the two groups (i.e., the sen-
tence pairs in group Sim�"(compared to those in group Sim�"(

is substantial. The cosine similarity values in Group Sim�"(are
consistently higher than those in Group Sim�"(, showing that
the sentences in Group Sim�"(are more similar to each other
compared to those in Group Sim�"(. Together, these results sug-
gest that the two groups of sentence pairs exhibit a notable and
meaningful difference in their similarity scores, and this difference
is not likely to be due to random chance.

However, the models still fail to recognize between 18.21% and
12.60% of figurative language instances. It is highly likely that if
we can improve the models’ understanding of figurative language
in such cases, they will function better in their use cases.

4.2 RQ2: Can the performance of software
engineering-specific affective analysis be
improved by a better insight into figurative
language?

Affect analysis involves identifying and evaluating human emo-
tions, feelings, and sentiments expressed through written com-
munication. Kovecses et al. noted that figurative expressions are
vital in expressing emotions [71], while Mohammad et al. [84]
observed that metaphorical words tend to contain significantly
more emotions than the literal sense of the same words. In soft-
ware engineering, affect is often related to the software and its
development process, including the emotional states of software
developers, productivity, and burnout [57, 58, 98]. Thus, identifying
and understanding affect is crucial for improving software quality
and developer productivity. However, several studies have shown
challenges in building reliable tools and datasets for mining emo-
tions and opinions in the SE domain [75, 94]. A recent study by
Imran et al. found that using figurative language in SE-related
text can hinder the accurate identification of emotions [65], partly
motivating our RQ2 investigation.

The use of LLMs has become a widely adopted method for iden-
tifying and classifying affective expressions in written text [36, 68,
111]. LLMs are usually fine-tuned to address specific affect analysis
tasks, such as recognizing sentiment or emotions. Recently, one
of the most effective ways to fine-tune an LLM is by applying a
contrastive learning approach. This approach uses sets of similar
and dissimilar instances to train the model to understand the simi-
lar instances and differentiate them from the dissimilar ones [78].
To answer this RQ, we leverage contrastive learning as the means

Shedding Light on Software Engineering-specific
Metaphors and Idioms ICSE 2024, April 2024, Lisbon, Portugal

for LLMs to better capture the meaning and nuances in figurative
language present in GitHub comments.

4.2.1 Compared models Similar to RQ1, we assess the ability of
the same four LLMs — BERT [69], RoBERTa [79], ALBERT [73],
CodeBERT [46] — with the same model versions as RQ1 from
HuggingFace. Previous research shows that BERT, RoBERTa and
ALBERT work well in SE affect analysis [20, 118, 122].

4.2.2 Contrastive learning Contrastive learning is a recently pro-
posed machine learning technique that involves training a model
to distinguish between two or more distinct data points by con-
trasting their differences [74]. The steps for applying this approach
to fine-tune LLMs for understanding figurative language elements
in the text can be outlined as follows:

(1) The LLM is presented with a triplet of anchor, positive and
negative samples, which are representative of the figurative
language elements to be learned.

(2) The LLM processes the samples and generates output em-
beddings for the data triplet.

(3) A loss function encourages the anchor and positive samples
to be closer together and the anchor and negative samples
to be further apart in the embedding space.

(4) The process is repeated until the LLM has learned a satis-
factory representation.

To apply contrastive learning, we use the original sentences
and EMSs as anchor and positive classes and DMSs as negative
classes. In other words, we created <original sentence, EMS, DMS>
and <EMS, original sentence, DMS> as a pair of triplets, where the
first element in each pair is anchor, the second element is positive,
and the third element is negative. There is a total of 3322 such
triplets of sentences in our dataset.

We use InfoNCE Loss as our loss function [95]. Given the em-
beddings of an anchor, a positive, and a negative sample denoted
as 0, ? , and = respectively, the InfoNCE loss is computed as follows:

InfoNCE Loss(0, ?, =) = − log
(

4sim(0,?)

4sim(0,?)+4sim(0,=)

)
where sim(0, ?)

represents the cosine similarity between the embeddings of the
anchor and positive samples, and sim(0, =) represents the cosine
similarity between the embeddings of the anchor and negative
samples. The InfoNCE loss maximizes the log-likelihood of anchor-
positive similarity and minimizes anchor-negative similarity. We
use the Adam optimizer.

Using contrastive learning, the LLM learns to create embeddings
that capture the semantic similarity between the original and EMS
while recognizing the semantic differences between the original and
DMS. This allows the LLM to learn a representation that separates
the positive and negative samples as much as possible. In this case,
the LLM learns to recognize the figurative language elements.

After fine-tuning the models with contrastive learning, we assess
their performance in two tasks: emotion recognition and incivility
detection. We compare the performance of these fine-tuned models
against baseline models that are not fine-tuned with figurative
language.

4.2.3 Datasets We apply the LLMs to two SE-affect datasets.
Emotion Dataset. Imran et al. [65] curated a multi-label emotion
dataset that is crawled from GitHub. The dataset consists of 2000
data points and six emotion classes: Anger, Love, Fear, Joy, Sadness,

and Surprise. The dataset contains 340 (17.0%) Anger comments,
220 (11.0%) Love comments, 198 (9.9%) Fear comments, 422 (21.1%)
Joy comments, 274 (13.7%) Sadness comments, and 328 (16.4%)
Surprise comments. The rest of the comments are neutral.
Incivility Dataset. Ferreira et al. [47] curated a dataset from
GitHub’s heated issues for incivility detection. The dataset has
three parts: comment level, issue level, and sentence level. We con-
sider only the comment-level dataset in our study, which has three
classes: Civil, Uncivil, and Technical. We consider only Civil and
Uncivil comments as we are only interested in affective analysis
for this RQ. The filtered dataset contains 718 comments, of which
232 (32.3%) are Civil comments, and 486 (67.7%) Uncivil comments.

4.2.4 Procedure and Metrics. Using random stratified sampling
for each class, we divide all two datasets into train (80%) and test
(20%) sets [22]. For each task (i.e., incivility detection and emotion
detection), we train (or fine-tune) both the LLMs’ contrastive learn-
ing and baseline versions. In other words, the contrastive learning
models are fine-tuned twice, first with contrastive learning and
figurative language and second with a task-specific dataset. The
baselines are only fine-tuned with the task-specific dataset.

We choose a metric that is frequently used to evaluate clas-
sification tasks: F1-score, which aggregates Precision and Recall.
Precision is the ratio of true positive instances to the total predicted
positive instances, and Recall is the ratio of true positive instances
to all instances in the positive class. F1-score is the harmonic mean
of Precision and Recall: F1-score = 2 ∗ %A428B8>=∗'420;;

%A428B8>=+'420;; . We also cal-
culate the micro average version for averaging the F1-score across
the classes following previous research [65, 110].

4.2.5 Results and Discussion Emotion Classification: Table 2
shows the results of the emotion classification task on Imran et al.’s
multi-label emotion dataset [65], using BERT, RoBERTa (RBTa),
ALBERT (ALBT), CodeBERT (CodBT) and their fine-tuned with
figurative language counterparts (BERT-FL, RBTa-FL, ALBT-FL,
CodBT-FL). The table presents the F1-score for each emotion class,
the micro-averaged F1-score, and the improvement in the F1-score
achieved by the figurative language versions of the models. The
results show that the use of contrastive learning with figurative
language improves performance on the emotion classification task
for most emotion types. For the micro-averaged F1-score, across all
emotions, the figurative language versions of the models achieve an
improvement of 6.60%, 6.66%, 3.63%, and 3.90% for BERT, RoBERTa,
ALBERT, and CodeBERT respectively. This implies that adding
figurative language to these models improves their capability to
comprehend and interpret the subtleties that developers use in
their communication.

In all four models, we see an increase in True Positives and a
decrease in both False Negatives and False Positives. For instance,
for the BERT model, across 6 emotions, micro-averaged recall in-
creases by 5.58%, and micro-averaged precision increases by 7.59%.
This indicates improved precision in predictions after applying
contrastive learning.

When considering the average improvement in individual emo-
tions across all models in Table 2, we observe that ‘Joy’ has most
improvement (7.67%), followed by ‘Surprise’ (5.45%). This correlates
with the frequency of occurrence of these emotions in GitHub com-
ments, e.g., Joy is much more commonly found than Fear. As our

ICSE 2024, April 2024, Lisbon, Portugal Mia Mohammad Imran, Preetha Chatterjee, and Kostadin Damevski

Table 2: Evaluation of LLMs finetuned with figurative lan-
guage on the Emotions Dataset (F1-score).

Model Anger Love Fear Joy Sad. Surp. Mic.Avg.

BERT 0.506 0.712 0.536 0.579 0.636 0.594 0.588
BERT-FL 0.547 0.709 0.562 0.608 0.661 0.632 0.627
+/- +8.10% -0.42% +4.85% +5.01% +3.93% +6.40% +6.60%
RoBERTa 0.525 0.683 0.500 0.613 0.673 0.592 0.593
RoBERTa-FL 0.551 0.733 0.545 0.667 0.667 0.617 0.632
+/- +4.95% +6.82% +8.26% +8.10% -0.90% +4.05% +6.66%
ALBERT 0.462 0.658 0.430 0.487 0.628 0.564 0.531
ALBERT-FL 0.443 0.682 0.435 0.540 0.624 0.592 0.550
+/- -4.11% +3.52% +1.15% +9.81% -0.64% +4.73% +3.63%
CodeBERT 0.484 0.711 0.507 0.558 0.575 0.576 0.561
CodeBERT-FL 0.497 0.723 0.444 0.605 0.645 0.617 0.583
+/- +2.79% +1.70% -14.08% +7.75% +10.92% +6.61% +3.90%
Avg. +/- +2.93% +2.90% +0.04% +7.67% +3.33% +5.45% +5.20%

figurative language dataset is randomly sampled, it is likely to
contain figurative expressions closely related to the emotions that
are more commonly observed in GitHub. This result suggests that
curating a larger and more diverse set of comments that include
figurative language could lead to a stronger and more balanced
performance improvement.
Error Analysis of BERT-FL vs. BERT. To gain deeper insight into
figurative language-based models’ predictive accuracy relative to
baseline models, we perform qualitative analysis. Our focus is
solely on BERT and BERT-FL models’ predictions. We examine two
specific areas: 1) True Positives where BERT-FL is correct while
baseline BERT is not, and 2) True Positives where baseline BERT is
correct while BERT-FL is not.

Among the positive instances, BERT-FL correctly predicts 39
utterances that the baseline BERT model does not. Consider the
following sentence: “Bah. Wasn’t supposed to add anything – it was
a debugging leftover…”. In this case, BERT-FL correctly predicts
‘Anger’, whereas BERT misclassifies it. Here, the word ‘leftover’
is used metaphorically. Normally, ‘leftover’ refers to ‘something
that remains unused or unconsumed’, particularly in the context of
food [14]. However, in the given sentence, the word is used to imply
that some code or modifications were unintentionally left behind
or overlooked during the debugging process. The BERT-FL model
likely captures the context more effectively. Another example, “Oh
nice‼ I’ve seen that syntax floating around, wanting to try it for a while

” - BERT-FL correctly classifies as ‘Joy’ which the BERT baseline
model misclassifies. Here, the BERT-FL is likely able to capture
that ‘floating around’ is an idiom [8] and interpret the meaning. In
some instances, BERT-FL makes correct predictions by adopting
a more conservative classification approach. For instance, BERT
classifies the following sentence as ‘Anger’ : “Please put this below
line 5 (together with the other non-app imports) :pray:”. However,
BERT-FL accurately predicts that it is not ‘Anger’.

On the other hand, in 27 cases, BERT-FL makes wrong pre-
dictions where BERT does not. Consider this utterance: “I have
currently no clue, but I’ll have a look”, this sentence contains the id-
ioms ‘have a clue’ and ‘have a look’ [8]. The author of the comment
likely was puzzled about some functions or errors. BERT identifies
correctly as ‘Surprise’ but BERT-FL does not. Possibly, BERT-FL
interpreted these idiomatic expressions more of a literal interpreta-
tion of the words. In some cases, BERT-FL just misclassifies without
any involvement of any figurative expressions. For example, “I guess
my concern is that it sets a precedent where somebody could see it and
think that it would be fine to use in ‘core’.” This expression express

Table 3: Evaluation of LLMs finetuned with figurative lan-
guage on the Incivility Dataset (F1-score).

Model Civil Uncivil Micro Average

BERT 0.537 0.814 0.734
BERT-FL 0.587 0.853 0.783
+/- +8.54% +4.84% +6.67%
RoBERTa 0.424 0.827 0.734
RoBERTa-FL 0.535 0.847 0.769
+/- +20.73% +2.33% +4.76%
ALBERT 0.151 0.807 0.685
ALBERT-FL 0.423 0.809 0.713
+/- +64.28% +0.30% +4.08%
CodeBERT 0.185 0.810 0.692
CodeBERT-FL 0.431 0.833 0.741
+/- +57.01% +2.74% +7.07%
Avg. +/- +37.64% +2.55% +5.65%

concern which is annotated as ‘Fear’. This expression conveys con-
cern, annotated as ‘Fear’. BERT identifies it correctly, but BERT-FL
does not. It is possible that during the contrastive learning process,
BERT-FL may lose some of the baseline BERTmodel’s ability to cap-
ture nuanced emotional indicators in certain sentences accurately.
This suggests that while this approach improves the overall model
performance but may introduce limitations or biases in some cases.
Incivility Classification: Table 3 presents the results of the inci-
vility classification task on Ferreira et al.’s incivility dataset [47],
using the same four large language models (BERT, RoBERTa, AL-
BERT, and CodeBERT) with and without the contrastive learning
approach. The micro-averaged F1-scores indicate that the models
perform better when applying the contrastive learning approach.
Overall, the BERT, RoBERTa, ALBERT, and CodeBERT models have
an average improvement of 6.67%, 4.76%, 4.08%, and 7.07% respec-
tively, when the contrastive learning approach is applied. Since
the incivility dataset is small and imbalanced, the baseline models
often struggle to classify the minor ‘Civil’ class, except for BERT.

We also observed a significant average improvement of 37.64%
across all models in the ‘Civil’ class, compared to a modest 2.55%
improvement in the ‘Uncivil’ class. This discrepancy likely arises
because the figurative language dataset used for contrastive learn-
ing primarily consists of ‘Civil’ comments, which are much more
common on GitHub than ‘Uncivil’ comments. Incorporating more
figurative expressions from ‘Uncivil’ comments into the dataset
could potentially enhance performance in this category as well.

It is important to note that the substantial improvements in
identifying ‘Civil’ comments are largely attributable to ALBERT
and CodeBERT, which showed improvements of 180% and 133%,
respectively. These models started from a lower performance base-
line, making such large gains more achievable compared to other
models. However, BERT and RoBERTa also demonstrated stronger
performance improvements in the ‘Civil’ class.

4.3 RQ3: Can a better understanding of
figurative language enhance software
engineering automation where affect plays
a role?

To answer this RQ, we focus on a specific use case: automatic bug
report priority detection, a major research area in software engi-
neering [113–115, 118], where previous research has highlighted
the role of affect [116].
Dataset. Bugzilla bug reports are widely used for priority detec-
tion [113, 116, 118]. The bug priority reports in Bugzilla are divided

Shedding Light on Software Engineering-specific
Metaphors and Idioms ICSE 2024, April 2024, Lisbon, Portugal

Table 4: Evaluation of LLMs finetuned with figurative lan-
guage on the Bug Report Priority dataset (F1-score).

Model P1 P2 P3 P4 P5 Micro Average

BERT 0.606 0.329 0.833 0.0 0.663 0.716
BERT-FL 0.632 0.359 0.842 0.0 0.667 0.730
+/- +4.31% +9.14% +1.10% - +0.52% +1.96%
RoBERTa 0.61 0.293 0.827 0.0 0.677 0.707
RoBERTa-FL 0.624 0.343 0.839 0.0 0.674 0.724
+/- +1.91% 17.24% +1.39% - -0.51% +2.40%
ALBERT 0.564 0.288 0.810 0.0 0.670 0.683
ALBERT-FL 0.602 0.299 0.827 0.0 0.674 0.709
+/- +6.71% +3.88% +2.14% - +0.53% +3.71%
CodeBERT 0.608 0.363 0.830 0.0 0.667 0.714
CodeBERT-FL 0.636 0.373 0.839 0.0 0.670 0.726
+/- +4.55% 2.64% +1.08% - 0.52% +1.61%
Avg. +/- +4.37% +8.23% +1.43% - +0.27% +2.42%

into 5 classes (i.e., P1 to P5, where P1 represents the highest priority
while P5 represents the lowest priority). Wang et al. collected 220k
bug reports from Bugzilla [118]. We sample 25% of this dataset
using stratified sampling across the 5 classes. We sample separately
from the training and testing splits provided by the authors, which
yielded a total of 49.6k bug reports. The distributions provided by
the authors are: 1) training: P1 - 19.56%, P2 - 18.45%, P3 - 58.12%,
P4 - 1.66%, and P5 - 2.21%; and 2) testing: P1 - 19.21%, P2 - 17.66%,
P3 - 59.5%, P4 - 1.48%, and P5 - 2.15%.
Procedure and Metrics. We use the same four LLMs (BERT,
RoBERTa, ALBERT, and CodeBERT) as baselines and follow the
same approach for training and testing described in RQ2. We use
F1-score as evaluation metric.
Results and Discussion. Table 4 shows the results of bug report
priority prediction on the Bugzilla dataset. All four models made
small improvements (1.96%, 2.40%, 3.71%, and 1.61% respectively)
when fine-tuned with figurative languages. On the other hand, the
improvements across classes (P1-P5) varied. The change in the P5
class was minimal (0.27%), and none of the models succeeded in rec-
ognizing any of the P4 instances. This is likely due to the fact that
these two classes have the smallest amounts of data, comprising
only 1.66% for P4 and 2.21% for P5 of the training data, respectively.
Such findings suggest that fine-tuning with figurative language is
not beneficial in cases of extreme data imbalance. For the average
performance improvement across all models in the other three
bug priority classes, we observe that P3 improved least (1.43%)
while P1 and P2 make more substantial gains of 4.37% and 8.23%.
Umer et al. [116] noted that a substantial number of instances in
the Bugzilla dataset are ‘Neutral’, indicating that including figu-
rative expressions from ‘Neutral’ utterances — which our dataset
predominantly omits — could potentially yield additional benefits.
Error Analysis of BERT-FL vs. BERT. To get an understanding of
where fine-tuned models are getting results correctly compared to
baseline models, we look into 51 instances where BERT-FL makes
the right predictions but BERT does not. We find that, indeed, some
of these bug reports include metaphors and idioms. For example,
consider the following bug report description, which is at the P2
priority level: “Deadlock when adding JSF framework I have experi-
enced a deadlock while I was adding JSF framework to regular web
project. […]” Here ‘Deadlock’ is a SE-specific figurative expression.
The baseline model predicted P3, but BERT-FL made the correct
prediction. Another example “Toot your own horn, put your name
in the credits window The credits window is empty […]”, annotated

as P3. Here, ‘toot your own horn’ is an idiom. BERT-FL correctly
predicted but the baseline model did not.

However, there are also cases with figurative language where the
fine-tuned model predicted incorrectly, while the baseline model
was right. For example, consider the following bug report “offline
task data is not retrieved on query […] (i.e., fetch all things before
hitting the road). […]” Here, ‘hitting the road’ is an idiom [8]. The
BERT-FL model predicts P1 when the original label is P3. It is
possible that BERT-FL recognizes the idiom, prioritizes its figurative
meaning, and predicts a higher class than the original label.

4.4 Implications
There are a number of actionable implications to our study. Cre-
ating a glossary of common figurative language for a software
project can be an invaluable tool for efficiently onboarding new de-
velopers [43]. It would help newcomers understand project-specific
or domain-specific terms, which are essential for their quick in-
tegration. Minimizing the use of obscure jargon that may cause
misunderstandings can enhance mutual understanding and collab-
oration among project participants [40]. Lastly, it’s important to
consider cultural differences [40] that may influence the interpre-
tation of figurative language, as these nuances can significantly
affect comprehension and communication within a diverse team.

Our study paves the way for several promising research direc-
tions in the realm of figurative language comprehension within soft-
ware engineering: 1) Integrating figurative language into cutting-
edge software engineering tools, such as CleBPI [118], could be
achieved through innovative approaches like contrastive learning,
self-supervised learning, or adversarial training; 2) Investigating
the role of figurative language in specific scenarios, including toxic
or uncivil comments, bug reports, and documentation, may yield
insights into its effects on software development workflows; 3)
Exploring the use of figurative language as a means for data aug-
mentation presents an intriguing opportunity, building on estab-
lished data augmentation techniques [65]; 4) Broadening the scope
of analysis to encompass various forms of figurative language,
such as similes, hyperbole, and personification, could enhance the
depth of model training; 5) Extending our analysis to software
engineering communication platforms beyond GitHub, including
Stack Overflow, Gitter, JIRA, and app reviews, would offer a more
holistic view of figurative language usage across different settings.
Adapting Large Language Models (LLMs) for domain-specific fig-
urative language has recently garnered interest in the NLP com-
munity [62, 67, 88, 120]. Our work compliments this by adapting
LLMs to the figurative language in software engineering.

5 RELATED WORK
We describe the related work sourced from three different domains:
figurative language analysis in the domain of Natural Language
Processing (NLP), affect analysis in Software Engineering (SE), and
bug report analysis in SE.
Figurative Language in NLP. Figurative language has long been
a topic of study in the field of NLP [26, 44, 50, 108]. Research has
explored its impact across various communication channels, in-
cluding online reviews and social media [72, 80]. Social media plat-
forms frequently employ figurative language to convey emotions,

ICSE 2024, April 2024, Lisbon, Portugal Mia Mohammad Imran, Preetha Chatterjee, and Kostadin Damevski

opinions, and feelings [99]. Furthermore, there have been investi-
gations that focus on the use of figurative language within specific
domains [62, 67, 88]. Specific forms of figurative language, such as
metaphors, idioms, similes, sarcasm, and irony, have been studied
in relation to tasks like offensive language detection [41, 119].

Scholars have categorized the detection of figurative language
into two tasks: recognizing text containing figurative language and
interpreting figurative expressions to identify their intended lit-
eral meaning [105]. Recognizing figurative language presents chal-
lenges due to themultiple interpretations that expressions can have.
To address these challenges, various methods have been proposed,
such as word vectors, rule-based approaches, semantic patterns,
and the application of LLMs [51, 61, 97, 109]. Interpreting figurative
language is a more complex task that requires a deeper understand-
ing of the text’s meaning [83]. Previous approaches have utilized
knowledge-based and corpus-basedmethods [82, 117]. Researchers
have leveraged LLMs to paraphrase figurative expressions tasks
and have been successful in interpreting metaphors, idioms, hyper-
bole, irony, sarcasm, and similes [26, 27, 67, 108]. Some of the most
common strategies applied to interpret figurative expressions us-
ing LLMs are zero-shot learning and fine-tuning using contrastive
learning [78]. Different from the prior work, we investigate the
ability of LLMs to interpret figurative language in the context of
SE communication.
Affect Analysis in SE. Affective expressions in written text can
be effectively analyzed by identifying linguistic cues that convey
emotions, feelings, or attitudes [77, 86]. The field of affect analysis
in software engineering is rapidly growing, focusing on under-
standing how emotions, opinions, sentiment, toxicity, incivility,
burnout, and offensive language impact software development
activities [30, 31, 34, 35, 47–49, 65, 66, 75, 76, 87, 92, 94, 101, 103].

LLMs have emerged as powerful tools for affect analysis, making
significant strides in the software engineering domain [18, 36, 68,
111]. They have proven their mettle in sentiment analysis across
various software-related artifacts and have even been instrumental
in detecting incivility and toxicity [21, 49, 102, 122].

Despite the advancements made and the use of modern LLMs,
some limitations need to be addressed, particularly in terms of gen-
eralizability. SE-specific affect analysis tools trained on one com-
munication forum may not perform well when applied to another
forum due to differences in norms, conventions, and cultures that
influence the expression of emotions and sentiments [91, 93, 94].
One major reason for this limitation is the tools’ inability to rec-
ognize implicit emotions or sentiments, often inferred through
context, tone, or other cues [65, 94]. These challenges call for de-
veloping more versatile and adaptable tools that can be applied
across multiple domains. In this paper, we explore interpreting
and fine-tuning figurative languages with LLMs to enhance the
generalizability of SE-specific affect analysis tools across different
artifacts.
Bug Report Analysis in SE. Bug report analysis is a mature
research area in SE spanning tasks like duplicate bug detection,
bug localization, deficient bug report, bug severity prediction, and
priority assignment [28, 29, 37, 56, 64, 113, 115, 118]. Of particular
relevance is bug report priority prediction, where affects in report
descriptions can influence triage decisions [116]. Recently, priority
inference models based on deep learning have been proposed using

LLMs [118]. This study explores whether fine-tuning LLMs with
figurative language can enhance performance of the task or not.

6 THREATS TO VALIDITY
Several limitations may impact the interpretation of our findings.
We categorize and list each of them below.
Construct validity. Construct validity refers to the degree to which
the study measures the concepts and constructs it claims to mea-
sure. A threat may arise from the manual annotations for the
dataset, specifically in creating semantically similar EMS and
DMS sentences. To mitigate this, we provided clear instructions
and examples to the annotators. Additionally, we only examined
metaphors and idioms; including other figurative language may
alter results. To investigate this, our annotation approach can be ex-
panded to analyze other forms. Another potential threat is that our
figurative language dataset was sourced from developer communi-
cation in 9 GitHub repositories, which may not be representative
of the figurative language present on GitHub.
Internal validity. Internal validity concerns the extent to which
the study’s findings can be attributed to the manipulation of the
independent variable. A threat is that the improved affect analy-
sis performance with figurative language fine-tuning may not be
solely due to the figurative language. However, we see consistent
improvements across all models and datasets, indicating it is a
key factor. Not doing cross-validation on the smaller datasets can
be another threat. To mitigate this, we use stratified sampling for
representativeness and a standard 80-20% train-test split.
External validity. External validity pertains to the generalization of
the findings of our study to other settings and contexts. Our results
may not generalize beyond the specific studied models, datasets,
and any other domain than GitHub. However, we use diverse pre-
trained LLMs and a Bugzilla dataset, showing some cross-domain
applicability. Further investigation is needed to validate our results
beyond the tools, data, and platforms used in our study.

7 CONCLUSION
This paper examined the relevance and impact of figurative lan-
guage in software engineering communication. To investigate this,
we annotated metaphors and idioms in a set of 2000 sentences col-
lected fromGitHub issues and PRswhich resulted in 1661 sentences
with figurative expressions, conducted a comprehensive analysis
of the prevalence of figurative language in messages posted on
PRs and issues in top 100 GitHub repositories, fine-tuned several
state-of-the-art pre-trained LLMs with the annotated dataset, and
evaluated the performance of these fine-tuned models on three
publicly available SE-specific datasets. Our results indicated that
figurative language is prevalent in software engineering commu-
nication, and fine-tuning LLMs with figurative language leads to
improved performance on affect analysis tasks (on the best model,
6.66% improvement on a GitHub emotion dataset, 7.07% improve-
ment on a GitHub incivility dataset, and 3.71% improvement on
a bug report prioritization dataset). Overall, our findings provide
evidence for the relevance and impact of figurative language in
software engineering communication and the potential benefits of
fine-tuning LLMs with figurative language in the context of soft-
ware engineering. However, there is room for further investigation.

Shedding Light on Software Engineering-specific
Metaphors and Idioms ICSE 2024, April 2024, Lisbon, Portugal

Beyond the future work directions discussed in Section 4.4,
our error analysis shows that fine-tuned models may sometimes
overemphasize figurative language, motivating the need for a differ-
ent fine-tuning approach. Addressing this issue while preserving in-
terpretive abilities presents an area for future research. Experiment-
ing with generative language models like ChatGPT and LLaMa to
assess their potential in enhancing the automatic interpretation
of complex figurative expressions could significantly benefit com-
munication and understanding in software development contexts.
Overall, this study provides a starting point for further empirical
research on figurative language’s impact on software engineering
communications in different application domains.

REFERENCES
[1] 1983. Mike Muuss: The Ping Program. https://tinyurl.com/djpput6b
[2] 2014. FDA: Software Development Glossary. https://tinyurl.com/vh3ekp48
[3] 2017. GitHub canjs/canjs PR 3286. https://shorturl.at/alpHV
[4] 2020. GitHub conwid/VSCleanBin Issue 2. https://shorturl.at/zKLPT
[5] 2022. GitHub adamit24/countdownClass Issue 1. https://shorturl.at/gBDQV
[6] 2023. Bugzilla Bug Tracking System. https://bugs.eclipse.org/bugs/.
[7] 2023. Cambridge Dictionary. https://dictionary.cambridge.org/
[8] 2023. The Free Dictionary - Idioms. https://idioms.thefreedictionary.com
[9] 2023. GitHub chipsalliance/chisel PR 3352. https://shorturl.at/eikLO

[10] 2023. GitHub godotengine/godot Issue 77480. https://shorturl.at/biw57
[11] 2023. Google ML Glossary. https://tinyurl.com/4n4e5cuz
[12] 2023. Hugging Face. https://huggingface.co/
[13] 2023. Longman Dictionary of Contemporary English. www.ldoceonline.com/
[14] 2023. Merriam-Webster Dictionary. https://www.merriam-webster.com/
[15] 2023. NLTK :: Natural Language Toolkit. https://www.nltk.org/
[16] 2023. OpenAI GPT Doc. https://platform.openai.com/docs/guides/gpt
[17] 2023. Oxford Learners Dictionaries. https://tinyurl.com/yfskwbr3
[18] F.A. Acheampong, H. Nunoo-Mensah, and W. Chen. 2021. Transformer models

for text-based emotion detection: a review of BERT-based approaches. Artificial
Intelligence Review (2021).

[19] Carol V. Alexandru, José J. Merchante, Sebastiano Panichella, Sebastian Proksch,
Harald C. Gall, and Gregorio Robles. 2018. On the usage of pythonic idioms.
Proceedings of the 2018 ACM SIGPLAN International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software (2018).

[20] H. Batra, N.S. Punn, S.K. Sonbhadra, and S. Agarwal. 2021. BERT-Based Senti-
ment Analysis: A Software Engineering Perspective. In International Conference
on Database and Expert Systems Applications. 138–148.

[21] E. Biswas, M.E. Karabulut, L. Pollock, and K. Vijay-Shanker. 2020. Achieving
reliable sentiment analysis in the software engineering domain using BERT. In
2020 IEEE International conference on software maintenance and evolution.

[22] Zdravko Botev and Ad Ridder. 2017. Variance reduction. Wiley statsRef: Statistics
reference online (2017), 1–6.

[23] Samuel Bowman, Gabor Angeli, Christopher Potts, and Christopher DManning.
2015. A large annotated corpus for learning natural language inference. In
Proceedings of the 2015 Conference on EMNLP. 632–642.

[24] Samuel Bowman, Jennimaria Palomaki, Livio Baldini Soares, and Emily Pitler.
2020. New Protocols and Negative Results for Textual Entailment Data Collec-
tion. In Proceedings of the 2020 Conference on EMNLP. 8203–8214.

[25] J. Briskilal and C. N. Subalalitha. 2022. An ensemble model for classifying
idioms and literal texts using BERT and RoBERTa. Inf. Process. Manag. (2022).

[26] Tuhin Chakrabarty, Debanjan Ghosh, Adam Poliak, and Smaranda Muresan.
2021. Figurative Language in Recognizing Textual Entailment. In Findings of
the ACL: ACL-IJCNLP 2021.

[27] T. Chakrabarty, A. Saakyan, D. Ghosh, and S. Muresan. 2022. FLUTE: Figurative
language understanding through textual explanations. In EMNLP.

[28] Oscar Chaparro, Juan Manuel Florez, Unnati Singh, and Andrian Marcus. 2019.
Reformulating queries for duplicate bug report detection. In 2019 IEEE 26th
international conference on SANER. IEEE, 218–229.

[29] O. Chaparro, J. Lu, F. Zampetti, L. Moreno, M. Di Penta, A. Marcus, G. Bavota,
and V. Ng. 2017. Detecting missing information in bug descriptions. In Proceed-
ings of the 2017 11th Joint Meeting on Foundations of Software Engineering.

[30] P. Chatterjee, K. Damevski, N.A. Kraft, and L. Pollock. 2020. Automatically
Identifying the Quality of Developer Chats for Post Hoc Use. In TOSEM.

[31] P. Chatterjee, K. Damevski, and L. L. Pollock. 2021. Automatic Extraction
of Opinion-Based Q&A from Online Developer Chats. 2021 IEEE/ACM 43rd
International Conference on Software Engineering (2021), 1260–1272.

[32] Chunyang Chen, Zhenchang Xing, and Ximing Wang. 2017. Unsupervised
software-specific morphological forms inference from informal discussions. In
2017 IEEE/ACM 39th International Conference on Software Engineering. IEEE.

[33] Xiang Chen, Chunyang Chen, Dun Zhang, and Zhenchang Xing. 2019. Sethe-
saurus: Wordnet in software engineering. IEEE Transactions on Software Engi-
neering 47, 9 (2019), 1960–1979.

[34] Z. Chen, Y. Cao, X. Lu, Q. Mei, and X. Liu. 2019. Sentimoji: an emoji-powered
learning approach for sentiment analysis in software engineering. In Proceedings
of the 2019 27th ACM joint meeting on ESEC/FSE.

[35] Zhenpeng Chen, Yanbin Cao, Huihan Yao, Xuan Lu, Xin Peng, Hong Mei, and
Xuanzhe Liu. 2021. Emoji-powered sentiment and emotion detection from
software developers’ communication data. ACM TOSEM 30, 2 (2021).

[36] Andrea Chiorrini, Claudia Diamantini, Alex Mircoli, and Domenico Potena.
2021. Emotion and sentiment analysis of tweets using BERT. In EDBT/ICDT
Workshops.

[37] Agnieszka Ciborowska and Kostadin Damevski. 2022. Fast changeset-based
bug localization with BERT. In Proceedings of the 44th ICSE. 946–957.

[38] M. Ciniselli, N. Cooper, L. Pascarella, D. Poshyvanyk,M. Di Penta, andG. Bavota.
2021. An empirical study on the usage of BERT models for code completion. In
2021 IEEE/ACM 18th International Conference on MSR. IEEE.

[39] Norman Cliff. 1993. Dominance statistics: Ordinal analyses to answer ordinal
questions. Psychological bulletin (1993).

[40] I. de Farias Junior, S. Marczak, R. Santos, C. Rodrigues, and H. Moura. 2022.
C2M: a maturity model for the evaluation of communication in distributed
software development. Empirical Software Engineering (2022).

[41] F.M. Plaza del Arco, M.D. Molina-González, L.A. Ureña-López, and M.-T. Martín-
Valdivia. 2022. Integrating implicit & explicit linguistic phenomena via multi-
task learning for offensive language detection. Knowledge-Based Systems (2022).

[42] Erik-Lân Do Dinh, Hannah Wieland, and Iryna Gurevych. 2018. Weeding
out conventionalized metaphors: A corpus of novel metaphor annotations. In
Proceedings of the 2018 Conference on EMNLP. 1412–1424.

[43] James Dominic, Charles Ritter, and Paige Rodeghero. 2020. Onboarding bot
for newcomers to software engineering. In Proceedings of the International
Conference on Software and System Processes. 91–94.

[44] Armin Esmaeilzadeh and Kazem Taghva. 2022. Text classification using neu-
ral network language model (nnlm) and bert: An empirical comparison. In
Proceedings of SAI Intelligent Systems Conference. Springer.

[45] Kawin Ethayarajh. 2019. How Contextual are Contextualized Word Represen-
tations? Comparing the Geometry of BERT, ELMo, and GPT-2 Embeddings. In
Proceedings of the 2019 Conference on EMNLP and the 9th IJCNLP. 55–65.

[46] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin, T. Liu,
D. Jiang, et al. 2020. CodeBERT: A Pre-Trained Model for Programming and
Natural Languages. In Findings of the ACL: EMNLP 2020. 1536–1547.

[47] I. Ferreira, B. Adams, and J. Cheng. 2022. How heated is it? Understanding
GitHub locked issues. In Proceedings of the 19th International Conference on
Mining Software Repositories.

[48] I. Ferreira, J. Cheng, and B. Adams. 2021. The ”Shut the f** k up” Phenomenon:
Characterizing Incivility in Open Source Code Review Discussions. Proceedings
of the ACM on Human-Computer Interaction (2021).

[49] I. Ferreira, A. Rafiq, and J. Cheng. 2022. Incivility Detection in Open Source
Code Review and Issue Discussions. arXiv preprint arXiv:2206.13429 (2022).

[50] Susan R Fussell andMallie MMoss. 2014. Figurative language in emotional com-
munication. In Social and cognitive approaches to interpersonal communication.
Psychology Press, 113–141.

[51] Gihan Gamage, Daswin De Silva, Achini Adikari, and Damminda Alahakoon.
2022. A BERT-based Idiom Detection Model. In 2022 15th International Confer-
ence on Human System Interaction (HSI). IEEE.

[52] Fabrizio Gilardi, Meysam Alizadeh, and Maël Kubli. 2023. Chatgpt outperforms
crowd-workers for text-annotation tasks. arXiv preprint arXiv:2303.15056 (2023).

[53] Rachel Giora and Ofer Fein. 1999. On understanding familiar and less-familiar
figurative language. Journal of pragmatics 31, 12 (1999).

[54] Luke B Godfrey and Michael S Gashler. 2015. A continuum among logarithmic,
linear, and exponential functions, and its potential to improve generalization in
neural networks. In 2015 7th IC3K, Vol. 1. IEEE.

[55] Wael H Gomaa, Aly A Fahmy, et al. 2013. A survey of text similarity approaches.
international journal of Computer Applications 68, 13 (2013), 13–18.

[56] Luiz Alberto Ferreira Gomes, Ricardo da Silva Torres, and Mario Lúcio Côrtes.
2019. Bug report severity level prediction in open source software: A survey
and research opportunities. Information and software technology 115 (2019).

[57] Daniel Graziotin, Fabian Fagerholm, Xiaofeng Wang, and Pekka Abrahamsson.
2017. On the unhappiness of software developers. In Proceedings of the 21st
international conference on evaluation and assessment in software engineering.

[58] Daniel Graziotin, Xiaofeng Wang, and Pekka Abrahamsson. 2015. Do feelings
matter? On the correlation of affects and the self-assessed productivity in
software engineering. Journal of Software: Evolution and Process 27, 7 (2015).

[59] Pragglejaz Group. 2007. MIP: A method for identifying metaphorically used
words in discourse. Metaphor and symbol (2007).

[60] Hessel Haagsma, Johan Bos, and Malvina Nissim. 2020. MAGPIE: A large
corpus of potentially idiomatic expressions. In Proceedings of The 12th Language
Resources and Evaluation Conference.

https://tinyurl.com/djpput6b
https://tinyurl.com/vh3ekp48
https://shorturl.at/alpHV
https://shorturl.at/zKLPT
https://shorturl.at/gBDQV
https://bugs.eclipse.org/bugs/
https://dictionary.cambridge.org/
https://idioms.thefreedictionary.com
https://shorturl.at/eikLO
https://shorturl.at/biw57
https://tinyurl.com/4n4e5cuz
https://huggingface.co/
www.ldoceonline.com/
https://www.merriam-webster.com/
https://www.nltk.org/
https://platform.openai.com/docs/guides/gpt
https://tinyurl.com/yfskwbr3

ICSE 2024, April 2024, Lisbon, Portugal Mia Mohammad Imran, Preetha Chatterjee, and Kostadin Damevski

[61] Yanfen Hao and Tony Veale. 2010. An ironic fist in a velvet glove: Creative
mis-representation in the construction of ironic similes. Minds and Machines
20 (2010), 635–650.

[62] K. Hilton, A. Siami Namin, and K. S. Jones. 2022. Metaphor identification in
cybersecurity texts: a lightweight linguistic approach. SN Applied Sciences
(2022).

[63] Fan Huang, Haewoon Kwak, and Jisun An. 2023. Is ChatGPT better than Human
Annotators? Potential and Limitations of ChatGPT in Explaining Implicit Hate
Speech. In Companion Proceedings of the ACM Web Conference 2023.

[64] M.M. Imran, A. Ciborowska, and K. Damevski. 2021. Automatically selecting
follow-up questions for deficient bug reports. In 2021 IEEE/ACM 18th Interna-
tional Conference on Mining Software Repositories. IEEE.

[65] M. M. Imran, Y. Jain, P. Chatterjee, and K. Damevski. 2022. Data Augmentation
for Improving Emotion Recognition in Software Engineering Communication.
In Proceedings of the 37th IEEE/ACM International Conference on ASE.

[66] Md Rakibul Islam and Minhaz F Zibran. 2017. Leveraging automated senti-
ment analysis in software engineering. In 2017 IEEE/ACM 14th International
Conference on Mining Software Repositories. IEEE.

[67] Rohan Joseph, Timothy Liu, Aik Beng Ng, Simon See, and Sunny Rai. 2023.
NewsMet: A ‘Do It All’dataset of contemporary Metaphors in News headlines.
In Findings of the Association for Computational Linguistics: ACL 2023.

[68] Zixuan Ke, Hu Xu, and Bing Liu. 2021. Adapting BERT for Continual Learning
of a Sequence of Aspect Sentiment Classification Tasks. In Proceedings of the
2021 Conference of the NAACL: Human Language Technologies. 4746–4755.

[69] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. 2019. Bert:
Pre-training of deep bidirectional transformers for language understanding. In
Proceedings of naacL-HLT, Vol. 1. 2.

[70] Jan Kocoń, Igor Cichecki, Oliwier Kaszyca,Mateusz Kochanek, Dominika Szydło,
Joanna Baran, Julita Bielaniewicz, Marcin Gruza, et al. 2023. ChatGPT: Jack of
all trades, master of none. Information Fusion (2023), 101861.

[71] Z. Kövecses. 2002. Emotion concepts: Social constructionism and cognitive
linguistics. In The verbal communication of emotions. Psychology Press, 117–132.

[72] Ann Kronrod and Shai Danziger. 2013. “Wii will rock you!” The use and effect of
figurative language in consumer reviews of hedonic and utilitarian consumption.
Journal of Consumer Research (2013).

[73] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush
Sharma, and Radu Soricut. 2019. Albert: A lite bert for self-supervised learning
of language representations. arXiv preprint arXiv:1909.11942 (2019).

[74] Phuc H Le-Khac, Graham Healy, and Alan F Smeaton. 2020. Contrastive
representation learning: A framework and review. Ieee Access (2020).

[75] B. Lin, N. Cassee, A. Serebrenik, G. Bavota, N. Novielli, and M. Lanza. 2022.
Opinion mining for software development: a systematic literature review. ACM
Transactions on Software Engineering and Methodology (TOSEM) 31, 3 (2022).

[76] Bin Lin, Fiorella Zampetti, Gabriele Bavota, Massimiliano Di Penta, Michele
Lanza, and Rocco Oliveto. 2018. Sentiment analysis for software engineering:
How far can we go?. In Proceedings of the 40th ICSE.

[77] Bing Liu. 2020. Sentiment analysis: Mining opinions, sentiments, and emotions.
Cambridge university press.

[78] Emmy Liu, Chenxuan Cui, Kenneth Zheng, and Graham Neubig. 2022. Testing
the Ability of Language Models to Interpret Figurative Language. In Proceedings
of the 2022 Conference of the NAACL: Human Language Technologies.

[79] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettle-
moyer, and V. Stoyanov. 2019. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692 (2019).

[80] Zhen Liu, Shao-hui Lei, Yu-lang Guo, and Zhi-ang Zhou. 2020. The interaction
effect of online review language style and product type on consumers’ purchase
intentions. Palgrave Communications (2020).

[81] R. Mao, Q. Liu, K. He, W. Li, and E. Cambria. 2022. The Biases of Pre-Trained
Language Models: An Empirical Study on Prompt-Based Sentiment Analysis
and Emotion Detection. IEEE Transactions on Affective Computing (2022).

[82] James H Martin. 2006. A corpus-based analysis of context effects on metaphor
comprehension. Trends in Linguistics Studies and Monographs 171 (2006).

[83] Matthew S McGlone. 1996. Conceptual metaphors and figurative language
interpretation: Food for thought? Journal of memory and language (1996).

[84] Saif Mohammad, Ekaterina Shutova, and Peter Turney. 2016. Metaphor as
a medium for emotion: An empirical study. In Proceedings of the Fifth Joint
Conference on Lexical and Computational Semantics.

[85] S. M. Mohammad. 2016. Sentiment analysis: Detecting valence, emotions, and
other affectual states from text. In Emotion measurement. Elsevier, 201–237.

[86] Myriam Munezero, Calkin Suero Montero, Erkki Sutinen, and John Pajunen.
2014. Are they different? Affect, feeling, emotion, sentiment, and opinion
detection in text. IEEE transactions on affective computing 5, 2 (2014).

[87] Alessandro Murgia, Parastou Tourani, Bram Adams, and Marco Ortu. 2014.
Do developers feel emotions? an exploratory analysis of emotions in software
artifacts. In Proceedings of the 11th working conference on MSR.

[88] U. Naseem, J. Kim, M. Khushi, and A. G. Dunn. 2022. Robust Identification of
Figurative Language in Personal Health Mentions on Twitter. IEEE Transactions
on Artificial Intelligence (2022).

[89] Colin J Neill, Philip A Laplante, and Joanna F DeFranco. 2011. Antipatterns:
managing software organizations and people. CRC Press.

[90] Y. Nie, A. Williams, E. Dinan, M. Bansal, J. Weston, and D. Kiela. 2020. Adversar-
ial NLI: A New Benchmark for Natural Language Understanding. In Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics.

[91] N. Novielli, F. Calefato, D. Dongiovanni, D. Girardi, and F. Lanubile. 2020.
Can we use se-specific sentiment analysis tools in a cross-platform setting?. In
Proceedings of the 17th International Conference onMining Software Repositories.

[92] N. Novielli, F. Calefato, and F. Lanubile. 2018. A gold standard for emotion
annotation in Stack Overflow. In Proceedings of the 15th International Conference
on Mining Software Repositories.

[93] N. Novielli, F. Calefato, F. Lanubile, and A. Serebrenik. 2021. Assessment of
off-the-shelf SE-specific sentiment analysis tools: An extended replication study.
Empirical Software Engineering 26 (2021).

[94] N. Novielli, D. Girardi, and F. Lanubile. 2018. A benchmark study on senti-
ment analysis for software engineering research. In Proceedings of the 15th
International Conference on Mining Software Reporsitories.

[95] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation learning
with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018).

[96] OpenAI. 2023. GPT-4 Technical Report. ArXiv abs/2303.08774 (2023).
[97] Jing Peng and Anna Feldman. 2017. Automatic idiom recognition with word

embeddings. In Annual International Symposium on Information Management
and Big Data. Springer.

[98] N. Raman, M. Cao, Y. Tsvetkov, C. Kästner, and B. Vasilescu. 2020. Stress
and burnout in open source: Toward finding, understanding, and mitigating
unhealthy interactions. In Proceedings of the ACM/IEEE 42nd ICSE: NIER.

[99] Diego Reforgiato Recupero, Mehwish Alam, Davide Buscaldi, Aude Grezka,
and Farideh Tavazoee. 2019. Frame-based detection of figurative language in
tweets [application notes]. IEEE Computational Intelligence Magazine (2019).

[100] N. Reimers and I. Gurevych. 2019. Sentence-BERT: Sentence Embeddings using
Siamese BERT-Networks. In Proceedings of the 2019 Conference on EMNLP and
the 9th IJCNLP.

[101] A. Sajadi, K. Damevski, and P. Chatterjee. 2023. Interpersonal Trust in OSS:
Exploring Dimensions of Trust in GitHub Pull Requests. In Proceedings of the
45th ICSE: NIER.

[102] Jaydeb Sarker. 2022. Identification and Mitigation of Toxic Communications
Among Open Source Software Developers. In Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering. 1–5.

[103] J. Sarker, A. K. Turzo, and A. Bosu. 2020. A benchmark study of the contemporary
toxicity detectors on software engineering interactions. In 2020 27th Asia-Pacific
Software Engineering Conference (APSEC). IEEE, 218–227.

[104] Oussama Ben Sghaier and Houari Sahraoui. 2023. A Multi-Step Learning
Approach to Assist Code Review. In 2023 IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER). IEEE, 450–460.

[105] Ekaterina Shutova. 2010. Models of metaphor in NLP. In Proceedings of the 48th
annual meeting of the Association for Computational Linguistics.

[106] Wei Song, Shuhui Zhou, Ruiji Fu, Ting Liu, and Lizhen Liu. 2021. Verb metaphor
detection via contextual relation learning. In Proceedings of the 59th Annual
Meeting of the ACL and the 11th IJCNLP.

[107] Guy Lewis Steele Jr. 1977. Macaroni is better than spaghetti. ACM SIGPLAN
Notices 12, 8 (1977).

[108] Kevin Stowe, Prasetya Utama, and Iryna Gurevych. 2022. IMPLI: Investigating
NLI Models’ Performance on Figurative Language. In Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics.

[109] C. Su, F. Fukumoto, X. Huang, J. Li, R. Wang, and Z. Chen. 2020. DeepMet:
A reading comprehension paradigm for token-level metaphor detection. In
Proceedings of the 2nd workshop on figurative language processing.

[110] N. Suhaimi, Z. Othman, and M. R. Yaakub. 2022. Comparative Analysis Be-
tween Macro and Micro-Accuracy in Imbalance Dataset for Movie Review
Classification. In Proceedings of 7th ICICT. Springer.

[111] Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang. 2019. How to fine-tune
bert for text classification?. In Chinese Computational Linguistics: 18th China
National Conference, CCL 2019, Proceedings 18. Springer, 194–206.

[112] S. Thapa, U. Naseem, and M. Nasim. 2023. From humans to machines: can
ChatGPT-like LLMs effectively replace human annotators in NLP tasks. In
Workshop Proceedings of the 17th ICWSM 2023.

[113] Yuan Tian, David Lo, and Chengnian Sun. 2013. Drone: Predicting priority of
reported bugs by multi-factor analysis. In 2013 IEEE International Conference
on Software Maintenance. IEEE, 200–209.

[114] Y. Tian, D. Lo, X. Xia, and C. Sun. 2015. Automated prediction of bug report
priority using multi-factor analysis. Empirical Software Engineering 20 (2015).

[115] QasimUmer, Hui Liu, and Inam Illahi. 2019. CNN-based automatic prioritization
of bug reports. IEEE Transactions on Reliability 69, 4 (2019), 1341–1354.

[116] Qasim Umer, Hui Liu, and Yasir Sultan. 2018. Emotion based automated priority
prediction for bug reports. IEEE Access 6 (2018), 35743–35752.

[117] Tony Veale and Yanfen Hao. 2008. A fluid knowledge representation for un-
derstanding and generating creative metaphors. In Proceedings of the 22nd
International Conference on Computational Linguistics (Coling 2008).

Shedding Light on Software Engineering-specific
Metaphors and Idioms ICSE 2024, April 2024, Lisbon, Portugal

[118] Wen-Yao Wang, Chen-Hao Wu, and Jie He. 2023. CLeBPI: Contrastive Learning
for Bug Priority Inference. Information and Software Technology (2023).

[119] Leila Weitzel, Ronaldo Cristiano Prati, and Raul Freire Aguiar. 2016. The Com-
prehension of Figurative Language: What Is the Influence of Irony and Sarcasm
on NLP Techniques?. In Sentiment Analysis and Ontology Engineering.

[120] T. Wijesiriwardene, A. Sheth, V. L. Shalin, and A. Das. 2023. Why Do We Need
Neurosymbolic AI to Model Pragmatic Analogies? IEEE Intelligent Systems
(2023).

[121] H. Yan, L. Gui, W. Li, and Y. He. 2022. Addressing Token Uniformity in Trans-
formers via Singular Value Transformation. In Proceedings of the Thirty-Eighth
Conference on Uncertainty in Artificial Intelligence, Vol. 180. PMLR, 2181–2191.

[122] Ting Zhang, Bowen Xu, Ferdian Thung, Stefanus Agus Haryono, David Lo, and
Lingxiao Jiang. 2020. Sentiment analysis for software engineering: How far can
pre-trained transformer models go?. In 2020 IEEE ICSME.

[123] Jianing Zhou, Hongyu Gong, and Suma Bhat. 2021. PIE: A parallel idiomatic
expression corpus for idiomatic sentence generation and paraphrasing. In Pro-
ceedings of the 17th Workshop on Multiword Expressions (MWE 2021).

	ABSTRACT
	1 INTRODUCTION
	2 DATASET
	2.1 Data Collection
	2.2 Data Annotation

	3 PREVALENCE OF SE-SPECIFIC FIGURATIVE LANGUAGE
	4 EXPERIMENTS AND DISCUSSION
	4.1 RQ1: How well can existing LLMs interpret figurative language (i.e., metaphors and idioms) used in software engineering?
	4.2 RQ2: Can the performance of software engineering-specific affective analysis be improved by a better insight into figurative language?
	4.3 RQ3: Can a better understanding of figurative language enhance software engineering automation where affect plays a role?
	4.4 Implications

	5 RELATED WORK
	6 THREATS TO VALIDITY
	7 CONCLUSION
	REFERENCES

