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Abstract

Monthly, 50 million users visit Stack Overflow, a popular Q&A forum used

by software developers, to share and gather knowledge and help with coding

problems. Although Q&A forums serve as a good resource for seeking help

from developers beyond the local team, the abundance of information can cause

developers, especially novice software engineers, to spend considerable time in

identifying relevant answers and suitable suggested fixes.

This exploratory study aims to understand how novice software engineers

direct their efforts and what kinds of information they focus on within a post se-

lected from the results returned in response to a search query on Stack Overflow.

The results can be leveraged to improve the Q&A forum interface, guide tools

for mining forums, and potentially improve granularity of traceability mappings

involving forum posts. We qualitatively analyze the novice software engineers’

perceptions from a survey as well as their annotations of a set of Stack Overflow

posts. Our results indicate that novice software engineers pay attention to only

27% of code and 15-21% of text in a Stack Overflow post to understand and

determine how to apply the relevant information to their context. Our results

also discern the kinds of information prominent in that focus.
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1. Introduction

Modern software development communities are becoming increasingly social

by contributing to crowdsourced content and using various social tools, includ-

ing public code repositories, developer question and answer (Q&A) forums, and

online chat communities. Monthly, about 50 million people visit the Stack Over-

flow Q&A forum to learn and share information [1]. Stack Overflow provides a

vast resource for software developers to get help from other developers beyond

their local developer community. Stack Overflow users include those who post

questions, answer questions, and search existing Q&A posts seeking help. In

this paper, we focus on Stack Overflow from the perspective of an individual

seeking help with programming errors.

An information seeker typically formulates a search query based on the task

to be accomplished, (in this case, the programming task and error they are

experiencing), uses that query to search online using a search engine or Q&A

forum search, and retrieves a list of results related to the query. Even after

their search query returns a set of relevant posts from Stack Overflow (and

possibly other forums), users seeking answers are faced with a set of posts

that require time to identify the relevant part of the post that provides an

appropriate solution for their context. Q&A forums often contain long threads

of discussions. Our analysis shows that on average, each sample Stack Overflow

post (consisting of just the question and at most two answers) in our data

set, contains approximately 27 sentences and 23 lines of code. The median

length of the subjects of our study is 23 sentences and 15 lines of code, and the

maximum number of sentences and lines of code could be as high as 187 and

240 respectively.

We have observed that for posts related to object-oriented programming

languages, developers include entire methods and even whole classes because
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they are not sure where the problem lies, and to provide context for others

to help them identify their problem. Code segments in questions are typically

accompanied by detailed descriptions of the questioner’s understanding of the

problem and errors/exceptions that they encountered.

A number of researchers have studied the problem of finding relevant in-

formation from Q&A forums [2, 3, 4]. Xu et al. [4] conducted a survey to

understand the developers’ difficulties of extracting relevant information from

Q&A forums. Some excerpts of their survey responses are: “Google will return

a number of ‘relevant’ links for a query, and I have to click into these links, and

read a number of paragraphs...It is really time-consuming...”, “...Some questions

received too many long answers, and many of these answers have redundant con-

tent.” Xu et al. also illustrated an example of how information overload can

be detrimental to a developer. They used Google to search for Stack Overflow

posts to understand the differences between HashMap and HashTable in Java.

The top 5 ranked Stack Overflow questions returned by Google, consist of 51

answers which have 6,771 words in total. Reading these answers at an average

reading speed of 200 words per minute could take about 30 minutes. The au-

thors also mentioned that “Even just reading the best answers (i.e., the accepted

answers) or top-voted answers may still take some time.”

Researchers have developed techniques and tools to help information seek-

ers on Stack Overflow, including reformulation of queries [5, 6] and automatic

recommendation of tags [7, 8] both targeted at retrieving better search results.

However, to our knowledge, no one has investigated how information seekers on

Stack Overflow focus their efforts in identifying their needed information from

a selected post result after they have narrowed down their search to a relevant

post in response to a search query.

In this paper, we report on an exploratory study that we conducted with the

goal of understanding novice software engineers’ challenges in pinpointing their

needed information from a selected post result, and their recommendations for

helping to reduce their time in locating the specific information. Finding help is

especially difficult for novice software engineers since they do not have sufficient
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Figure 1: Overview of Exploratory Study Methodology

expertise and prior knowledge of the subject to quickly skim through a post to

find the relevant information. Our study focuses on the common case of Stack

Overflow use, where a novice software engineer is seeking help to fix errors and

exceptions in their application [9].

Specifically, we conducted an exploratory case study to answer the following

research questions:

RQ1 Challenges - Assuming that the relevant post in Stack Overflow is already

identified, what slows a novice software engineer down in identifying the

solution most appropriate for their problem?

RQ2 Focus - Which parts of a Stack Overflow post would these novice software

engineers recommend highlighting to focus attention quickly to reduce

their time in locating information within a post?

The results of our study could be leveraged for: (1) designing a user interface

of Stack Overflow that draws the reader’s attention to the relevant parts of the

thread to help them to quickly choose a suitable solution, (2) guiding tools for

mining Stack Overflow for knowledge gathering to the most salient parts of the

question and answers, and (3) improving granularity of traceability mappings

to Stack Overflow from other software artifacts and tools.
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2. Methodology

2.1. Overview

Figure 1 shows the major steps of our exploratory study. To answer research

question 1 (RQ1), we developed and distributed a survey to novice software

engineers to gather their perceptions of what slows them down in their Stack

Overflow usage. The second research question (RQ2) is answered by novice soft-

ware engineers examining and annotating a random sample of Stack Overflow

posts to indicate what they would recommend to highlight to focus attention.

We contacted 50 novice software engineers to participate in our study and se-

lected 400 unique Stack Overflow posts. Two authors then manually analyzed

the annotations, labeling the different kinds of information highlighted by the

novice software engineers. This manual labeling resulted in identification of six

major categories of highlighted information in the Stack Overflow posts. Using

the identified labels, the researchers qualitatively and quantitatively analyzed

the annotations again to answer RQ2, and gain more insight into where they

focus their attention.

2.2. Novice Software Engineers

We conducted our study during lab sessions of an undergraduate software

engineering course. Limiting the study to students enrolled in a specific course

helps us in identifying participants with similar experience and skill level. We

received responses from 50 participants in total, all with prior programming

experience of at least 2 years in Java and/or C++. Each participant was asked

to indicate their Stack Overflow usage as either (1) Never (don’t know what

it is), (2) Seldom (at least once in six months), (3) Periodically (at least once

in a month), or (4) Frequently (at least once a week). The responses indicate

that 62% use Stack Overflow frequently, 32% use it periodically, and 6% use it

seldom. None of the participants indicated ‘Never’. Thus, at least 94% use Stack

Overflow at least monthly. Since this is a study of novice software engineers, we

do not expect lots of heavy users of Stack Overflow. Each participant was also
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asked to indicate their experience as a software engineer outside school (e.g.,

summer intern, part-time job). 51.1% participants selected “yes”, and 48.9%

selected “no” to this question.

2.3. Pilot Study

To finalize the survey and annotation task, we first performed a pilot study

with 25 developers. We assigned 4 posts to each of our participants, which

took them approximately 20 minutes to annotate. In total, the participants

submitted annotations on 100 Stack Overflow posts (2-6 different opinions on

30 unique posts). The questions asked in the pilot study were:

PQ1: Assuming that the Stack Overflow post provided to you in this study is

relevant to your question, what slows you down in identifying the solution you

believe will be most appropriate/applicable for your problem?

PQ2: Which code in the question/answer would you recommend highlighting

to focus attention quickly?

PQ3: Which natural language text in the question/answer do you think high-

lighting would help to focus attention quickly?

Since the purpose of the pilot study was to understand the common slowdowns

faced by novice software engineers in identifying information relevant to a prob-

lem they are experiencing, we framed the first question as a leading question.

However, to allow flexibility of opinions, we made the answer in the form of a

short descriptive text. We summarized the responses that we received from the

pilot study by clustering the related responses into themes. These themes were

used as the answer options to each question along with the option to enter a

new answer in the survey of novice software engineers’ perceptions, which we

describe in the next subsection. Since the 30 unique posts used in the pilot study

are not representative of the large number of error/exception related posts on

Stack Overflow, we expanded the sample size for our survey of novice software

engineers to 400 unique posts, to obtain a confidence level of 95% and margin

of error of 5%.
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2.4. Survey of Novice Software Engineers’ Perceptions

Figure 2 shows the survey questions that the novice software engineers were

asked. The answers to the first question were used to provide insight into

research question RQ1. The remaining questions in the survey form were used

to collect the novice software engineers’ perceptions on research question RQ2.

To gain perceptions in the form of reflective feedback after looking at concrete

examples, novice software engineers completed all the survey questions after

they had completed their annotation task.

2.5. Novice Software Engineer Annotation Study

To collect data from participants actually reading concrete example posts

in addition to providing their perceptions on a survey, each novice software

engineer in our study was asked to take on the role of an information seeker for

a sample of Stack Overflow posts. This section describes the details of the Stack

Overflow post selection and redaction, manual highlighting task by participants,

and labeling and analysis of the annotations by the researchers.

2.5.1. Stack Overflow Post Selection and Redaction

We selected a set of 400 Stack Overflow posts related to errors and exceptions

in the commonly used Java and C++ programming languages, using Stack

Exchange Data Explorer [10]. Our data set comes from a wide time range

from August 2008 until March 2019. We retrieved posts that contain the tag

‘Java’ and/or ‘C++’, since all our novice software engineers have considerable

programming experience in these two programming languages.

Previous studies have categorized Stack Overflow questions into several cat-

egories such as “how-to”, “conceptual”, “discrepancy”, and “error” [9, 11, 12].

Since, the focus of this study is to understand novice software engineer behavior

on finding help with programming errors, we specifically selected posts where

the title contains one or more of the terms “error”, “exception”, “bug”. It should

be noted that the “errors” category is in the top 4 most frequently occurring

question categories.
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Q1: When you are using Stack Overflow to help you in your coding, and  
once you have identified a particular post, what do you believe is the major  
obstacle(s) that slows you down in reading through the post to identify the  
solution you believe will be most appropriate/applicable for your problem?  
You may select more than one. * 
 
� Too much text containing unnecessary details 
� Too much code containing unnecessary details 
� Determining if code segment in the post is similar to my code 
� Identifying the cause of error/exception 
� Identifying the suggested fix 
� Absence of accepted answers 
� Absence of suggested code in answers 
� Platform dependencies and deprecated APIs 
� Other 
 
Q2: When there is significant amounts of code in the post, which code  
components in the question/answer/comment would you recommend  
highlighting to focus your attention quickly? You may select more than one. * 
 
� Only the problematic code (code responsible for error/exception) in the question 
� Problematic code in the question and its context  

(e.g. 5 lines before and after the problematic code) 
� Entire solution code as suggested in the answer/comment 
� Only the necessary code modifications as suggested in the answer/comment 
� Only the suggested code in verified/accepted answers 
� Other 
 
Q3: Which natural language text in the question/answer/comment do  
you think highlighting would help to focus your attention quickly? You may 
 select more than one. * 
 
� Text in the question describing the developer's intended outcome 
� Text in the question describing the error/exception 
� Text in the answer/comment describing the cause of the error/exception 
� Text in the answer/comment describing the suggested solution 
� Text in the answer/comment describing why the suggested solution works 
� Text clues in the answer/comment pointing to suggested solution 

(e.g. "following code", "below code") 
� A comment that reaffirm a solution's correctness  

(e.g. "Thanks, this code works.") 
� Programming environment dependencies 
� Coding best practices 
� Other 

 

Figure 2: Survey Form for Novice Software Engineers’ Perceptions

8



To ensure selection of good quality posts, we chose posts with a total vote

count of 3 or higher. We chose posts in which the question contains at least

one code segment. Including code segments in questions helps the asker to

clarify or specify the information need she is seeking for [13], and also provides

the Stack Overflow audience more context to understand and/or answer the

question. Program-specific questions such as asking about how to fix a bug are

difficult to answer if no code fragment is included in the question[14].

We excluded posts that did not have at least two answers. If any of the

selected posts had more than two answers, we chose the top two answers (the

“accepted/best voted answer” and the “second answer”), and redacted the re-

maining answers to ensure that the participants did not spend undue time on

each post, preventing them from annotating more posts in a reasonable time.

For posts that did not have an accepted answer, we chose the top 2 best voted

answers. In some posts, the accepted answer is also the best voted answer, so

we chose the “accepted/best voted answer” and the second best voted answer

as the “second answer”. For posts where the accepted answer was not the same

as the best voted answer, we chose the accepted answer as the “accepted/best

voted answer” and the best voted answer as the “second answer”. The redaction

helped to ensure that the study took no longer than 60 minutes for each par-

ticipant. The documents contained all attributes of the original posts such as

date, timestamp, comments, vote count, tags etc. The final data set consisted

of 400 unique questions, and 800 unique answers.

To gain insight into the overall quality and popularity of the posts selected

in our data set, we give some statistics as follows:

(a) The minimum vote count for the questions in our data set is 3; the

maximum is 1795 (mean = 32).

(b) The minimum answer count (number of answers to a question in a post)

is 2; the maximum is 32 (mean = 6).

(c) 324 out of 400 (~81%) posts contain an accepted answer.

(d) The minimum view count of the posts is 263; the maximum is 1,104,490

(mean = 35,415).
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2.5.2. Novice Software Engineers’ Manual Highlighting

Each participant completed the concrete task of annotating a set of posts fol-

lowing the instructions: “For each of the posts provided as pdf, highlight the min-

imum amount of code and phrases/sentences in the question and answer, that

you believe would be most helpful in making you more efficient in understanding

your problem and the suggested solution.” To ensure that the participants un-

derstood the instructions, we first conducted a pilot study with 25 developers

and 100 Stack Overflow posts (details in Section 2.3). We provided the partic-

ipants with opportunities to ask for clarification of the instructions during the

pilot study. We analyzed the annotations, and based on the responses from the

pilot study we revised the instructions for the main survey.

Figure 3 shows an example manual annotation by a participant. This ex-

ample post is longer in reality, we removed parts of the post from this figure

since it is difficult to fit the entire post in one figure. Overall, we have removed

15 lines of code/stack traces and 5 sentences in this figure. Also, note that

we are showing only the question and the accepted answer, whereas the study

document contained the question, the two best answers, and the comments to

the question and answers.

We assigned 8 posts to each of our novice software engineer participants,

which together took approximately 40 minutes to annotate. In total, the par-

ticipants submitted annotations on 400 unique Stack Overflow posts, which cor-

responds to 400 unique questions and 800 unique answers (two answers selected

for each question as a part of document selection).

2.5.3. Researchers’ Manual Labeling of Annotations

Examination of the annotations indicates that the annotations consist of

different types of information, which are important to understand for building

automated systems to help novice software engineers on Stack Overflow, as well

as to improve tools that mine Stack Overflow for information. Therefore, we

followed an inductive approach [15] to qualitatively analyze the annotations on

the Stack Overflow posts. Two of the authors performed the manual labeling.
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We created a code book to define the labels and memos to facilitate the process

of analysis. For labelling each annotation, we wrote memos to record comments

and reflections by the researcher, and additional information (if applicable).

The analysis was performed in an iterative approach comprised of multiple

sessions, which helped in generalizing the hypotheses and revising the defini-

tions of the labels. To calculate inter-rater agreement, we used Cohen Kappa

coefficient [16]. Section 3 describes the labels, which constitute our categories

of information, and the inter-rater agreement findings.

2.5.4. Quantitative and Qualitative Analysis of Labeled Annotations

After deriving categories of information from the manual labeling of Stack

Overflow highlights from the participants, we returned to the annotations to

perform a deeper analysis of the highlighted text, code, and stack traces. To

better understand how the portions of code, text, and stack traces in a Stack

Overflow post are typically helpful for novice software engineers to understand

their problem and select a potentially suitable solution, we manually counted the

number of sentences highlighted in the natural language text and the number of

lines of code and stack traces highlighted in each post. We compared them to

the total number of sentences and lines of code/stack traces per post. Since, in

multiple cases, participants highlighted phrases instead of complete sentences,

we also calculated the percentage of words highlighted in each post. We also

analyzed the location of the highlighted portions with regard to Stack Overflow

question and title, accepted or second answers, and comments that occur in a

question or either of the two answers. These quantities are separately reported

by text, code, and stack traces.

To identify the prevalence of each type of information available in a post,

we first computed their frequency and percentage of occurrence across all the

posts. To gain an insight into how important different information is to novice

software engineers, we then calculated the frequency and percentage of posts

where participants highlighted code/text related to each type of information.

We separated these results by Stack Overflow question and answers.
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Lastly, we collected the responses from the last two questions in the percep-

tions survey (in Figure 2) which the participants took after completing their

annotation task. We summarize those results.

2.6. Threats to Validity

Here, we describe the potential threats to validity of our study and how we

designed our study to minimize the threats, organized by kinds of threats [15].

Construct validity. As with any case study based on human participants, the

results of the study are subjective to human judgement, and based on individu-

als’ opinions. To minimize this threat, we ensured that all the participants had

considerable programming and Stack Overflow experience. Labeling of anno-

tations in our study was performed by researchers, and therefore is dependent

on human judgement. To limit this threat, two researchers with experience in

qualitative data analysis performed the labeling. We calculated the inter-rater

agreement using Cohen Kappa coefficient, and iteratively discussed and resolved

conflicts, resulting in coefficient of 0.8.

Internal validity. It is possible that participants highlighted portions of posts

based on factors other than the information that is actually highlighted, whereas

the researchers analyzed the highlights based on content. To minimize this

threat, we also collected the perceptions of the participants after they completed

their concrete task. Our study examines the focus of novice software engineers

after they have narrowed down to a single post. The results might vary if we

considered the case where no post contains a fix for their error. Additionally,

if any of the selected posts had more than two answers, we chose the top two

answers and redacted the remaining to ensure that the participants did not

spend undue time on each post. In a real environment novice software engineers

might spend a lot of time reading through those additional answers. Analyzing

that scenario is beyond the scope of this study. Since the study participants

were provided with sample Stack Overflow posts to analyze, they were not

experiencing the errors/exceptions that triggered them to search for solutions on

Stack Overflow. Therefore, the participants could have possibly been unaware of
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the context of the problem that information seekers in similar situations would

have. Hence as a future work, we plan to expand the study by providing specific

aims for the novice software engineers and letting them solve a programming

task using the information from the annotated post.

External validity. Various kinds of questions with specific developer intents

are asked on Stack Overflow, including “how-to”, “decision help”, “error”. [9].

Our study focus is on questions related to errors/exceptions. The scope of our

case study was intentionally designed to learn about the behavior of the novice

software engineers who are seeking information about errors and exceptions.

The programming language of the selected posts are Java and C++. Thus, the

results may not apply to posts with other programming languages. However,

we chose posts discussing various types of errors and exceptions as the subjects

of the study, and since Stack Overflow and other Q&A forums have abundant

threads on fixing/avoiding errors and exceptions, we believe our results would be

applicable to those types of posts. More research is necessary to investigate the

generalization of our findings to all types of questions in Stack Overflow. The

kinds of information are highly dependent on the developer discussion format

and hence we do not claim the generalizability of the results of this study across

other datasets such as Github issue trackers, etc. The results of the study

are based on 50 responses on 400 distinct Stack Overflow posts. It is possible

that scaling to more perceptions might lead to different observations. Also, the

targeted participants in this study are undergraduate students who are enrolled

in introductory software engineering course, and are therefore novice software

engineers. Expanding this study to a wider audience with different programming

skills and experience might yield different results.

Reliability. To ensure that the questions and instructions in our study were

clear and easy to understand, we performed a pilot study with 25 developers

prior to distributing the task and survey to our participants. Based on their

feedback, we revised and incorporated necessary changes before conducting the

study.
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Table 1: Participant Responses on Question1 of survey

Perceived cause of slowdown %Participant

Too much text containing unnecessary details 69

Determining embedded code segment relevance 51

Too much code containing unnecessary details 39

Absence of accepted answers 36

Absence of suggested code in answers 35

Identifying the suggested fix 28

Identifying the cause of error/exception 27

Platform dependencies and deprecated APIs 26

3. Findings

We present our findings by research question.

RQ1: Once a novice software engineer has identified a Stack Overflow post

relevant to their question, what slows them down in identifying the solution

most appropriate for their problem?

Table 1 shows the percentage of the 50 participant responses in each cate-

gory of the question “What do you believe is the major obstacle(s) that slows

you down in reading through the post to identify the solution you believe will

be most appropriate/applicable for your problem?” The majority of partici-

pants answered “Too much text containing unnecessary details”, followed by

“Determining embedded code segment relevance”, and “Too much code contain-

ing unnecessary details”. Only 4% participants selected the “Other” option, in

which a participant stated “Often, the answers might be too complicated for me

to understand”.

RQ2: Which parts of a Stack Overflow post would novice software engineers

recommend highlighting to focus attention quickly to reduce their time in locating

information within a post?

We first present the findings from the annotation study, followed by the

participant perceptions from the survey.
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Quantity and Location of Participant Highlights: Table 2 presents the results on

how much and where the participants highlighted natural language text in the

different components of the Stack Overflow posts in our study. The first column

indicates the different Components in each post: Question & Title, Answers and

Comments. Typically, the title contains only one sentence, so we combined the

title and the question body into one component to calculate the measures. We

further split answers into ‘Accepted/Best Voted’ answers and ‘Second” answers’.

Since comments can be written for both questions and answers, we separated our

findings for comments accordingly. Out of 400 posts in total, comments were

present for 225 questions, 299 accepted/best voted answers, and 250 second

answers.

To provide context, the Total #Snts and Total #Words columns report the

total number of sentences and words, respectively, present in all posts in our

data set. The #Hghlt Snts and #Hghlt Words columns show the total number

of sentences and words respectively, that were highlighted by the participants.

In the %Hghlt Snts and %Hghlt Words columns, we present the percentage of

highlighted sentences and words across our data set, respectively. For exam-

ple, using Table 2, we observe that 716 of 2899 sentences (24.7%), and 9695

of 52,391 words (18.5%) were highlighted in the titles and questions. When

participants highlighted phrases instead of entire sentences, we counted the en-

tire sentence containing potentially multiple highlighted phrases as one sentence

when calculating the number of highlighted sentences. The remaining columns

in Table 2 help us to understand the proportions of each component that are

highlighted by the participants. Specifically, we report the mean number of

sentences and words present in each post per component in the Mean #Snts/

Comp and Mean #Words/ Comp columns, respectively. The Mean #Hghlt

Snts/Comp and Mean #Hghlt Words/Comp columns are the mean number of

sentences and words highlighted in each post per component.

Analysis of Table 2 provides several key observations:

• In total, only 21% of sentences and 15% of words were highlighted. These
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results suggest that very little text needs to be highlighted to focus a novice

software engineer’s attention to speed up their use of Stack Overflow. This

implies that there may be a much text in posts that may not be necessary

for novice software engineers to find and reuse a solution to their problem.

• Novice software engineers focus their attention primarily on the accepted

answer, highlighting 42% of the sentences, and then almost equally on

‘Question & Title’ and ‘Second answer’ with 25% highlighted sentences

in each of these components. Upon analyzing the posts where the second

answers were highlighted more than the accepted/best voted answers, we

noticed that the comments in those posts indicated the second answer to

be a better answer than what was best voted and/or accepted, and hence

some participants chose to highlight more information in the second an-

swer. Our qualitative analysis of these cases suggests that novice software

engineers may look beyond accepted/best voted answer when either the

accepted answer did not have enough information/explanation about the

suggested solution, or other readers indicated that the suggested solution

is inefficient/wrong.

• Very little text is highlighted in comments, only 5% sentences for com-

ments in question and accepted answer, and 2% for comments in second

answer text. Our participants do not find the comments to be a key source

of information in their usage of Stack Overflow.

Table 3 presents our results on how much and where the participants high-

lighted the code and stack traces in the different components of a Stack Overflow

post. Again, the first column shows the different Components in each post. The

Total #LOC and Total #LST columns report the total number of lines of code

(LOC) and lines of stack trace (LST), respectively, appearing across all posts

in our data set. The #Hghlt LOC and #Hghlt LST columns provide the total

number of lines of code and stack traces, respectively, highlighted by the partici-

pants. In the %Hghlt LOC and %Hghlt LST columns, we report the percentage

of highlighted lines of code and stack traces. We show the mean number of
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lines of code and stack traces present in each post per component in the Mean

#LOC/Comp and Mean #LST/Comp columns, respectively. The Mean #Hghlt

LOC/Comp and Mean #Hghlt LST/Comp columns present the mean number

of lines of code and stack traces highlighted in each post per component.

From Table 3, we make several key observations:

• In total, only 27% of code and 23% of stack traces are highlighted. Similar

to the natural language text in the posts, this reflects the prevalence of

much longer code and stack traces than needed for novice software engi-

neers to identify and reuse a solution to their problem.

• Similar to novice software engineers focusing primarily on the natural

language text of posts in the accepted answer, they also focus primarily

on the code in the accepted answer with 38% highlighted code. Unlike the

natural language text, they focus next on the code in the second answer

with 30% highlighted code, more than the question and title with 22%

highlighted code. This suggests that novice software engineers are looking

for suggested code examples to reuse as opposed to studying the buggy

code included in the question. Also, the total number of lines of code in

Question & Title is much higher (5k LOC) than in the answers (2k LOC),

and not all of the additional code may be necessary for novice software

engineers to determine if the problem in the question matches with the

problem in their context.

• The percentage of highlighted lines of stack traces in the answers (30-

38%) is higher than the question (20%), primarily because the total lines

of stack traces present in the answers across all the posts is low, which can

skew the overall percentage. Stack traces are rarely found in answers, and

are mostly present only in the questions (1.2k LST) to show more details

about the encountered errors or exceptions.

• Overall, 20% code in comments is highlighted compared to 68% of answers

highlighted , indicating that novice software engineers do not focus much
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Table 4: Presence of information category in participants’ highlights

Component Category

Location

Text Code
Stack

Trace

Question & Title

Developer’s Goal X - -

Developer’s Pertinent Action X X -

System Symptom X - X

Answer

Symptom Cause X - -

Posted Solution X X -

Solution Justification X - -

Comments

Developer’s Pertinent Action X X -

System Symptom X - X

Symptom Cause X - -

Posted Solution X X -

Solution Justification X - -

on code in comments compared to answers. Although stack traces are

useful for developers to locate bugs in their code, both code and stack

traces are rarely present in comments. Comments to the Question mostly

contain additional follow-up or clarification questions, and comments to

the Answer mostly contain additional information related to the solution

provided. Out of 400 posts, 41 posts have code in comments, and only 2

posts have stack traces in comments.

Categories of Highlighted Information: Through our two researchers’ qualitative

analysis of the highlights, we identified six main types of information in a Stack

Overflow post that were prevalent across the participants’ highlights.

Developers’ Goal: The software developer’s objective or intended outcome.

Developer’s Pertinent Action: The software developer’s action that led to

the symptom that they are experiencing. This category can be further divided

into three subcategories:

Specific problematic code segment: The exact lines of code that need to be

fixed, typically identified by an information helper in an answer, but occurring

(usually embedded in a larger code segment) in the developer’s question.

Code surrounding the problematic code: The extra code included beyond the

20



problematic code which the questioner posted because they know the problem

lies somewhere in the whole code segment and possibly want to provide more

context for others to help identify the problematic code.

Text: A description of (all or) part of the action that the developer took

that led to the problematic code. The questioner will often describe a set of

actions they took, but only some of them led to the problematic code. The text

describing the action that actually led to problematic code can be identified

using the information helper’s indication of the problematic code.

System Symptom: Observed system response to the developer’s action that

does not meet the developer’s intended outcome.

Symptom Cause: Reason why the developer action resulted in the System

Symptom.

Posted Solution: Suggested alternate approach to meet the developer’s in-

tended outcome and avoid/fix the System Symptom.

Solution Justification: Reason why the Posted Solution achieves the intended

outcome.

Figure 3 shows an example highlighted Stack Overflow post 1 with labelled

categories. Table 4 indicates the post components in which each category of

information typically occurs in our data set. Developer’s Goal, Developer’s Per-

tinent Action, and System Symptom are related to the situation and problem

faced by the questioner, and are therefore most frequently in Question & Title.

The remaining categories Symptom Cause, Posted Solution, and Solution Jus-

tification pertain to the suggested fix as proposed by other contributors. They

could be present in either answer or comments. Comments rarely contain Devel-

oper’s Pertinent Action, or System Symptom, but when present, they occur in

comments mostly when the original questioner adds information as comments.

Typically, comments seldom contain Solution Justification, as comments are

rarely long enough to accommodate such information.

1https://stackoverflow.com/questions/54266858/polymorphism-in-java-errorcannot-find-

symbol
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Title 
Polymorphism in Java error:cannot find Symbol

Question 
I've just started learning object oriented programming from the book head 
first java.It said that polymorphism enables me to create an array of the 
superclass type and then have all the subclasses as the array elements. But 
when I tried writing code using the same principles it ran into error 
saying error: cannot find symbol I made the classes the superclass was 
animal and the dog class extended the animal class having a fetch method of 
its own, but when I referenced the dog variable as animal it did not work 
here is the code
The Animal Class
…
The dog Class
public class dog extends animal{ 
public void fetch(){

System.out.println("Auoooooooo"); } }
The Tester Class
public class tester{ 
public static void main(String args[]){ 

animal doggie = new dog();
doggie.fetch(); 
doggie.eat(); 
doggie.roam(); }}

The error
tester.java:4: error: cannot find symbol
doggie.fetch();
symbol: method fetch()
location: variable doggie of type animal

Accepted Answer 
When using polymorphism, if you create an instance of the subclass and 
store its reference in a variable of superclass type, you can only call those 
methods on the newly created instance which are present in the super class.

In your code, you created an instance of dog class and stored its reference 
in doggie which is of type animal (super class of dog), In such case, you can't 
call any method on dog class instance that isn't available in animal class.
fetch method is not defined in the animal class hence you get the error.
Solution
Either define the fetch method in the animal class
OR
change
animal doggie = new dog();  
to
dog doggie = new dog();

Developer 
Goal

Developer 
Pertinent 

Action

System 
Symptom

Solution 
Justification

Symptom 
Cause

Posted 
Solution

Figure 3: Example of labelled highlights in an annotated post

22



Table 5: Frequency of information category in participants’ highlights of question and title

Question/title

(400 Question

Instances)

Dev’s

Goal

Dev’s Pertinent Action System Symptom

Final
Prob.

code

Surr.

code
Text Final

Stack

trace
Text

#Instances 375 380 212 247 312 320 131 317

#Highlighted instances 163 201 97 73 124 184 69 158

%Highlighted instances 43.5 52.9 45.8 29.6 39.7 57.5 52.7 49.8

Table 6: Frequency of information category in participants’ highlights of answers

Answers
Symptom

Cause

Posted Solution Solution

JustificationFinal Code Text

Accepted/

Best Voted

Answer

(400 Answer

Instances)

#Instances 189 362 353 157 173

#Highlighted

instances
138 276 245 103 80

%Highlighted

instances
73 76.2 69.4 65.6 46.2

Second

Answer

(400 Answer

Instances)

# Instances 177 351 333 157 158

#Highlighted

instances
67 175 137 68 42

%Highlighted

instances
37.9 49.9 41.1 43.3 26.6

Qualitative Categorization of Participant Highlights: Tables 5 and 6 present

the results from qualitative analysis of the categories of information in each of

the participants’ highlights. Before qualitatively labeling the participant high-

lights with the category of information, two of the authors separately coded a

set of highlights and compared labeling to insure adequate agreement to label

separately. The coefficients for each type of information were as follows: De-

veloper’s Goal (0.80), Developer’s Pertinent Action (0.87), System Symptom

(0.88), Symptom Cause (0.88), Posted Solution (1.00), Solution Justification

(0.62). These are all above the indicated 0.6 coefficient values needed to suggest

substantial results [17]. However, to resolve conflicts, we initiated a discussion

and refined codes if applicable. Given the level of agreement, after this process,

all the data from one of the authors was used for labeling.

Table 5 shows the frequency and percentages of each information category

in the Question & Title posts. The #Instances row gives the total number of
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posts where each category of information occurs in the posts, the #Highlighted

instances and %Highlighted instances rows give the total number of instances

and percentages of instances highlighted for each category of information across

the data set. Each column indicates a category of information available in Ques-

tion & Title posts. We split Developer’s (Dev’s) Pertinent Action into three

columns: Problematic (Prob.) code, Surrounding (Surr.) code, and Text. For

each instance, if any of these subcategories is highlighted, we add one to the final

count of the information category (Developer’s Pertinent Action). Similarly, we

split System Symptom into two subcategories: Stack trace and Text, and if any

one of these subcategories is highlighted, we add one to the count for System

Symptom. For example, the first row indicates that Developer’s (Dev’s) Goal

occurs in 375 of 400 (94%) question and title instances, and at least one of the

subcategories of Developer’s Pertinent Action were available in 380 (95%) in-

stances, and at least one of the subcategories of System Symptom were available

in 320 (80%) instances.

Analysis of Table 5 provides several key observations:

• While Developer’s Goal and Developer’s Pertinent Action categories of in-

formation appear in almost all of the question (95%) instances, the System

Symptom category appears in 80% post instances. This is because some

questioners were seeking information on how to possibly avoid certain er-

rors/exceptions and did not explicitly mention their system response to

an error/exception.

• All three categories of information that occur in the question component

of a post (Developer’s Goal, Developer’s Pertinent Action, and System

Symptom) were highlighted in about half of the instances; however, De-

veloper’s Pertinent Action and System Symptom were highlighted more

frequently (53% and 58%, respectively) than Developer’s Goal (44%). This

is partly due to user preference, since we observed that 18 of our 50 par-

ticipants consistently never highlighted Developer’s Goal. These results

indicate that our participants focus more on descriptions of the Devel-
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oper’s Pertinent Action and System Symptom when reading Stack Over-

flow posts.

• When the participants highlighted the Developer’s Pertinent Action, they

highlighted the Problematic Code most often, then the Text, and lastly

the Surrounding code. These results indicate that the Problematic Code

is considered most relevant by novice software engineers to understand

the specific developer action that led to the error/exception, but they also

believe that it is somewhat important to focus on the surrounding code

and corresponding text description.

• Participants who highlighted the System Symptom highlighted both stack

trace and text description of the System Symptom about the same fre-

quency, both the majority of the time. This suggests that novice software

engineers focus on stack trace information almost as much as the textual

descriptions of symptoms.

Similar to Table 5, each row of Table 6 shows the frequency and percentages

of information category in the Answer instances. We show separate counts

for ‘Accepted/Best voted’ answers and ‘Second’ answers. The Symptom Cause,

Posted Solution, and Solution Justification columns correspond to each category

available in both types of Answer instances. We further split Posted Solution

into two subcategories as Code, and Text. For each instance, if any of the

subcategories is highlighted, we add one to the final count for the category

(Posted Solution). For example, the first row for ‘Accepted/Best voted Answers’

shows that of 400 answer instances, Symptom Cause is available in 189 instances

(47%), and either of the subcategories of Posted Solution is available in 362

instances (91%), and Solution Justification is present in 173 instances (43%).

Analysis of Table 6 provides several key observations:

• As expected, Posted Solution information occurs in almost all (91%) of

the accepted answer instances. In the few cases that there is no Posted So-

lution, Symptom Cause information is offered instead. Information about
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the Symptom Cause occurs much less frequently (47%) and Solution Jus-

tification information even less frequently (43%) in accepted answer in-

stances.

• In both accepted and second answer instances, the participants focused

their attention primarily on the Posted Solution information with 76% and

50% highlights, respectively. The accepted answer highlights are much

more frequent most likely because the participants have more confidence

in answers that are indicated as helpful by the original questioner and

other users.

• When participants highlighted Posted Solution information, they focused

almost equally on code (69%) and text describing the Posted Solution

(66%) in the accepted answer instances. There is a similar pattern for

second answer instances with more equal focus between code and text

descriptions. This is expected since novice software engineers are typi-

cally looking for some description to understand the code provided in the

answers.

• Beyond the Posted Solution information, the participants focused more

on the Symptom Cause than the Solution Justification, almost twice as

often in the accepted answer instances and only slightly more often focus

on Symptom Cause in the second answer instances.

• Descriptions of Solution Justification are not frequently highlighted, only

27-46% of the occurrences. Similar to Developer’s Goal information, this

is partly because of user preference, since we observed that 14 of 50 par-

ticipants consistently never highlighted this information.

We also computed the frequency of each category in participants’ highlights

of comments in questions and answers. Comments to the ‘Accepted/Best Voted

Answers’ are most frequently highlighted. The most frequent categories high-

lighted in comments to ‘Accepted/Best Voted Answers’ are Posted Solution,

Symptom Cause and Solution Justification with 9-14% (20-32 of 229) instances
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highlighted for each category. Each of the remaining categories was highlighted

in less than 10% (16 of 165) of the instances containing the information.

There were only a few other kinds of information in the participants’ high-

lights, which we did not classify into one of the six categories. In the answers,

this included links to helpful tutorials/developer blogs, text describing the as-

sumptions and limitations of suggested solutions and phrases indicating whether

the proposed solution works. In comments, they sometimes highlighted insight-

ful follow-up questions. Any additional information was rarely highlighted in

the questions.

Novice Software Engineer Reflections after Annotating: The last data that we

analyzed were the responses to the last two questions in the perceptions survey

(Figure 2) completed after the annotation task. Out of 50 participants, Table

7 shows the percentage of participant recommendations for each sub-question

of RQ2. These categories are not necessarily the same as the categories of

highlighted information. For RQ2(a): When there is significant amounts of code

in the post, which code components in the question/answer/comment would you

recommend highlighting to focus your attention quickly? , the most prevalent

answers were problematic code in question and its context. For RQ2(b): Which

natural language text in the question/answer/comment do you think highlighting

would help to focus your attention quickly?, participants ranked the text in

the question describing the error/exception, the text in the answer/comment

describing the cause of the error/exception, and the text in answer/comment

describing the suggested solution highest. None of the participants selected

“Other” for any of these two questions.

4. Implications and Recommendations

Based on our results, we provide implications for both improving Q&A fo-

rums for software engineers and potential improvements to Q&A mining-based

tools to help software engineers. Our findings suggest that, while novice software

engineers could read the entire Stack Overflow posts and answers that they are
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Table 7: Participant Reflections after annotation task

Recommended Highlight %Participant

Code

Only the problematic code in question 36

Problematic code in question and its context 50

Entire solution code suggested in answer/comment 28

Only necessary code modifications suggested in

answer/comment
39

Only suggested code in verified/accepted answers 39

Text

Text in question describing developer’s intended

outcome
51

Text in question describing the error/exception 66

Text in answer/comment describing cause of the

error/exception
63

Text in answer/comment describing suggested

solution
63

Text in answer/comment describing why suggested

solution works
35

Text clues in answer/comment pointing to suggested

solution
25

A comment that reaffirm a solution’s correctness 41

Programming environment dependencies 11

Coding best practices 15
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provided in the study, they highlighted only 27% of code and 16-21% of natural

language text that could potentially help them to understand and determine

how to apply the relevant information to their context. The small percentage of

highlighting of relevant information suggests that designing a browser extension

or a highlighting interface tool could be useful to help novice software engineers

on these forums. Results also indicate some design considerations for such a

tool. For example, the highlighting tool could ignore comments and second an-

swers and set priority on other components of a post. Automatically classifying

and highlighting each category of information by color would provide the novice

software engineers with the option of adjusting their focus on specific types of

information. Additionally, the categories of information identified by our quali-

tative analysis could be leveraged to improve search results on Stack Overflow.

For example, if posts are clustered and ranked based on information category,

it might be easier for novice software engineers to quickly browse through more

posts and identify the most relevant one.

The small percentage of recommended highlights and the various categories

could also potentially be leveraged by tools that mine Stack Overflow for various

tasks. Depending on the mining tool’s objective, it could filter out irrelevant

content and mine only specific parts of a post based on our categories of in-

formation. For example, tools investigating common coding problems such as

API misuse on Stack Overflow could extract and analyze code in ‘Developer’s

Pertinent Action’.

5. Related Work

To our knowledge, this is the first study on how to increase the efficiency

of novice software engineers on Stack Overflow as they read a single post. Re-

searchers have conducted studies of questions, answers, and the code examples

embedded in Stack Overflow posts towards determining their quality in terms

of helpfulness[18], good and bad quality characteristics[19, 13, 20, 21], code

correctness[22], and understandability of code examples[23]. Others have stud-
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ied Stack Overflow to determine developer behaviors [24, 25, 26, 9] and topics

of discussion[11, 27], to compare the kinds of information on Stack Overflow

against information available in other kinds of artifacts[28, 29, 30], to gather

opinions[31], and to determine what triggers questions[32]. Others have applied

topic analysis and mining of domain-specific information [33, 34], exploring gen-

der bias [35, 36, 37], and emotions [38, 39]. We specifically study the behavior of

novice software engineers on Stack Overflow, and investigate how they use their

time and focus in identifying relevant information from the question and the

two best answers provided to them in the study. We assume that the relevant

post is already identified.

There have been several advances to improve Stack Overflow for the users,

including recommending tags [7, 40, 41], grouping semantically related tags [42,

43, 44, 8], adding and replacing improved embedded code snippets[45], detecting

duplicate questions [46, 47, 48], improving quality post detection[49, 50, 49], pre-

dicting questions as they are posed as being quality that would result in deletion

[51], and helping users reformulate queries for better search[52]. Souza et al. [53]

developed a technique to help developers in searching content on Stack Overflow,

by recommending a ranked list of question and answer pairs (instead of entire

Q&A threads) based on their query. Recently, Phan et al. proposed an approach

using statistical machine translation to resolve the fully qualified names (FQNs)

for API elements in Stack Overflow code snippets [54]. Zhang et al. [55] ana-

lyzed 200 threads from the Java Swing Forum and identified eight categories of

sentences in a discussion thread (“Design-Goal”, “How-to”, “Question-of-code”,

“Neutral-Action”, “Claims”, “Neutral-Behavior”, “Question-of-Behavior”, and

“Negative-Behavior”), which are related to the six information categories (“De-

veloper’s Goal”, “Developer’s Pertinent Action”, “System Symptom”, “Symp-

tom Cause”, “Posted Solution”, and “Solution Justification”) we identified in

Stack Overflow posts. After identifying the categories of sentences, Zhang et

al. also designed a technique to extract problematic API features from online

developer discussions [55], which in turn could potentially help to identify “hot

topics” in a forum, highlight the negative sentiment sentence and its neighbors
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in a discussion to guide a reader’s attention and speed up reading, and help

form better search queries. Similar to how Zhang et al.’s work could be used

to design a browser extension, our results can direct the design of a browser

extension or a highlighting interface tool to speed up reading individual forum

posts, and thus improve the experience of novice software engineers seeking help

on Stack Overflow.

In context of analyzing error related posts, previous studies identified broader

categorization of the content of forum posts such as specific challenges that pro-

grammers had about a software framework [56]. Mining information related

to programming errors and exceptions from code examples on Stack Overflow

is common. Among others, researchers have identified common error patterns

[57], and API usage obstacles [58]. A key mechanism for providing such mined

information is through Integrated Development Environments (IDE) recommen-

dations [59, 60, 61]. Categories of information proposed in our paper are based

on Stack Overflow posts related to errors and exceptions, and thus could possi-

bly be leveraged by tools that mine Stack Overflow for related tasks.

Researchers have proposed several techniques to extract and summarize rel-

evant information from software artifacts. Treude et al. [62] designed an ap-

proach to automatically augment API documentation with insightful sentences

from Stack Overflow. Wong et al. [63], designed an automatic comment gener-

ation tool that extracts code segments along with their descriptions from Stack

Overflow and leverages this information to automatically generate descriptive

comments for similar code segments in open-source projects. Lotufo et al. [64]

proposed a bug report summarization technique that estimates a user’s atten-

tion on different sentences in a bug report when pressed with time. Rastkar et

al. [65] proposed an extractive approach for automatic bug report summariza-

tion that uses a binary classifier to determine whether a comment should be

selected or not. Xu et al. [4] designed an approach to generate multi-answer-

posts summary for a given technical question in Q&A forum. Di Sorbo et al.

[66] developed an approach to create summaries of mobile app reviews. The au-

thors classify and group sentences in a user review to one of the user-intention
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categories (“Information Giving”, “Information Seeking”, “Feature Request”,

“Problem Discovery”, and “Other”), and then use a sentence selection and scor-

ing mechanism to generate the user review summary. Similar to Di Sorbo et

al.’s user-intention categories, our proposed categories of information in Stack

Overflow posts could possibly be leveraged for summarization or information

extraction related tasks.

Beyond software artifacts, there has been significant contribution in sum-

marizing various types of documents such as email, chat and meeting conver-

sations [67, 68, 69, 70]. Marcu [71] developed a discourse-based approach for

text summarization by using Rhetorical Structure Theory (RST). Radev et al.

[72] proposed a multi-document summarization technique for news articles by

using cluster centroids produced by a topic detection system. Rambow et al.

[73] worked on summarizing email threads by leveraging the dialogic structure

of email communication. Carenini et al. [74] summarized email conversations

based on the conversational cohesion and the subjective opinions. Zhou and

Hovy [68] proposed an approach for summarizing IRC logs. They cluster the dis-

cussions according to subtopic structure and then generate summaries for each

of the clusters by extracting adjacent pairs of user response through machine

learning methods. Murray et al [75] summarized meeting documents according

to a meeting ontology representing phenomena such as decisions, action items

and sentiment.

6. Conclusions and Future Work

This paper presents results from an exploratory study to understand Stack

Overflow novice software engineers’ challenges in pinpointing their needed in-

formation within a selected post, and their perceptions of the parts of the post,

highlighting of which would help to focus attention to increase their efficiency.

Our findings suggest that, while novice software engineers could read the entire

Stack Overflow posts and answers that they are provided in the study, they

highlighted only 27% of code and 16-21% of natural language text that could
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potentially help them to understand and determine how to apply the relevant

information to their context. Further, the relevant (highlighted) parts on which

they focus attention can be categorized as primarily the System Symptom and

Developer’s Pertinent Action, and then the Developer’s Goal within the ques-

tion component, and in the answer, mainly the Posted Solution and Symptom

Cause and to a lesser extent, the Solution Justification.

Since this study is focused on posts related to errors and exceptions in

Java/C++, we plan to investigate the generalizability of the proposed cate-

gories of information to other kinds of posts on Stack Overflow. We also plan to

explore the feasibility of automatically identifying and classifying the categories

of information in a Stack Overflow post, and conduct a case study of information

seekers using a highlighting tool based on these results.
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