
Extracting Code Segments and Their Descriptions
from Research Articles

Preetha Chatterjee, Benjamin Gause, Hunter Hedinger, and Lori Pollock
Computer and Information Sciences

University of Delaware

Newark, DE 19716 USA

Email: {preethac, bengause, hedinger, pollock}@udel.edu

Abstract—The availability of large corpora of online software-
related documents today presents an opportunity to use machine
learning to improve integrated development environments by
first automatically collecting code examples along with associated
descriptions. Digital libraries of computer science research and
education conference and journal articles can be a rich source for
code examples that are used to motivate or explain particular
concepts or issues. Because they are used as examples in an
article, these code examples are accompanied by descriptions of
their functionality, properties, or other associated information
expressed in natural language text. Identifying code segments
in these documents is relatively straightforward, thus this paper
tackles the problem of extracting the natural language text that
is associated with each code segment in an article. We present
and evaluate a set of heuristics that address the challenges of
the text often not being colocated with the code segment as in
developer communications such as online forums.

Index Terms—mining software repositories, information ex-
traction, code snippet description, text analysis

I. INTRODUCTION

With the increased online sharing of software-related infor-

mation, software engineers often look beyond documentation

and their local resources, seeking examples and advice from

experiences of other developers not geographically nearby. The

examples are more useful if there is an explanation of their

functionalities and properties that they exhibit. These code

descriptions are often not found in others’ source code, but

are instead in other software-related artifacts such as Q&A

forums, blog posts, and emails. The vast availability of online

resources has also motivated researchers to develop techniques

to help developers more efficiently locate code examples with

descriptions by automatically mining code examples from

various sources, including emails [1], [2], [3], [4], Q&A

forums [5], [6], [7], [8], API documentation [9], bug reports

[10], and stack traces.

Digital libraries for computer science research and educa-

tion articles could potentially provide a large amount of code

examples with descriptions. The ACM Digital Library contains

an archive of every article and publication published by ACM

from 1950s to present [11]. The IEEE Xplore DL includes

over 180 journals, over 1,400 conference proceedings, more

than 3,800 technical standards, over 1,800 eBooks and over

400 educational courses. Each month, 20,000 new documents

are added to IEEE Xplore on average [12]. The publication

count of the top conference in the field of software engineering

alone, ICSE, is 8,459 at present [13]. In total, the IEEE Xplore

digital library provides web access to more than 3.5-million

full-text documents of publications in the fields of electrical

engineering, computer science and electronics [12].

This paper explores the potential for digital libraries of com-

puter science research and education conference and journal

articles to serve as another resource for good code examples

with descriptions. To investigate the availability of code exam-

ples in computer science digital libraries, we manually counted

the number of code segments in 100 randomly selected

research articles from ICSE, FSE, and ICSME proceedings.

70% of the selected articles contained one or more code

segments, with an average of 3-4 code segments per article.

The examples always have some associated descriptions of

their functionality, properties, or other associated information

expressed in natural language text.

As an example of the kind of information that can be

extracted from source code descriptions in research literature,

consider a code snippet and its description in Figure 1,

extracted from a paper published in ICSE 2014. The descrip-

tion of the code snippet provides useful information about

the source code, including (1) the programming language it

was written in, (2) the intent of the overall code that the

programmer is implementing of which this code segment is

a part of (i.e., a web application), (3) some of the APIs it

uses, and (4) the sub-steps being implemented by the code

segment, i.e., a description of its functionality.

Mining code segments and their descriptions from research

articles presents challenges beyond those faced in mining from

unstructured documents such as forums, bug reports, emails,

and issue tracking. In all of these unstructured documents,

including research articles, the code segments are intermixed

with natural language text, sometimes separated by blank lines

and sometimes single code statements within paragraphs or

even individual identifiers within sentences. In all of these

documents, the code segments are embedded in the main-

stream text. In contrast, code segments in research articles are

sometimes embedded within the text, but often separated as

figures, which are rarely positioned in the flow consecutively

with the text that describes them. The figure could be located

in a different section or different page. This physical separa-

tion of code segment from description makes the description

identification problem, i.e., the problem of identifying all the

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

978-1-5386-1544-7/17 $31.00 © 2017 IEEE

DOI 10.1109/MSR.2017.10

219

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

978-1-5386-1544-7/17 $31.00 © 2017 IEEE

DOI 10.1109/MSR.2017.10

91

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

978-1-5386-1544-7/17 $31.00 © 2017 IEEE

DOI 10.1109/MSR.2017.10

91

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

978-1-5386-1544-7/17 $31.00 © 2017 IEEE

DOI 10.1109/MSR.2017.10

91

1 $("#addphoto").on(’click’,
2 function() { useGetPicture();}
3);
4 function useGetPicture() {
5 var cameraOptions = { ... };
6 navigator.camera.getPicture(onCameraSuccess,
7 onCameraError, cameraOptions);
8 }
9 function onCameraSuccess(imageData) {
10 var image = document.getElementById("..");
11 image.src = "data:image/jpeg" + imageData;
12 }
13 function onCameraError(message) {
14 alert("Failed: " + message);
15 }

Figure 2: A JavaScript code snippet containing Cor-
dova, JQuery and JavaScript DOMAPI usage. Each
of the bolded elements can be linked back to the rel-
evant API documentation.

(a) Code segment as a figure

Next, consider the JavaScript snippet in Figure 2,
where a developer is trying to make a web app
that can take a photo and inject it into an
element in an HTML document. This example
interacts with the JavaScript DOM
(getElementById), takes a photo using the
Cordova project (getPicture), and uses JQuery
to detect when the photo should be taken
($ and on). For each of these method references
Baker can identify the API that it is from.

(b) Code-related descriptive text

Fig. 1: A sample code snippet with description extracted from

the article “Live API Documentation” (ICSE 2014)

text that contains description of the functionality or property

of an embedded code segment, more difficult. The problem

is further complicated by the common situation in which the

research article contains multiple code segments, in which case

the textual descriptions that are identified need to be mapped

to the corresponding code segment. Lastly, the description

identification problem would be simpler when there is less text

to analyze, but unfortunately research conference articles in

general contain 400 lines of natural language text, considerably

longer than emails, bug reports, and forum entries. If one wants

to scale a code segment and description mining technique, the

technique cannot analyze every line of text.

Researchers have developed techniques to automatically

extract code segments from emails, bug reports, Q&A sites and

tutorials [1], [2], [10], [5]. These techniques are also applicable

to extract code segments from research articles. Less work

has focused on the code description identification problem.

Traceability analyses can use code terms in a sentence or

paragraph as an indicator of which API is being described

[5], [14]. Text preceding code segments in Stack Overflow can

be extracted as potential comments for similar code segments

in an application [6]. Similarly, method descriptions can be

extracted using clues in the text [15], [16].

To the best of our knowledge, this is the first paper to ad-

dress the code description identification problem for research

articles and other similar documents such as dissertations. The

main contributions of this paper are:

• a set of heuristics to automatically identify and map

text that is describing code segments in research articles,

including segments embedded as figures

• a set of heuristics to expand the neighborhood of iden-

tified descriptions to include informative, yet less obvi-

ously related text

• a tool that takes research articles as input and outputs

an XML-based representation with markups to associate

identified code segments with their corresponding de-

scriptions

• an evaluation study that evaluates the effectiveness of the

presented code description identification techniques

II. MOTIVATING EXAMPLES

In addition to the example in Figure 1, we present three

additional code snippets and their descriptive text extracted

from research articles and discuss how they could be used to

further motivate extracting code segments with descriptions

from research articles. The description of the code snippet

shown in Figure 2 explains this code’s inefficiency and pro-

vides useful information including (1) it is a method used

for testing more than one test scenario, (2) the specific test

coverage of the method, (3) it contains redundancy in the

source code, (4) it contains example usage of API methods,

and (5) a proposed solution to remove the redundancy. Beyond

using the code and its description to show usage of particular

APIs in text methods, using this example code segment to

learn about redundancies in test methods, an IDE could be

designed to detect redundancy in lines of code, prompting the

user to make separate methods for different test scenarios and

congregate the ones with similar functionalities.

The next description in Figure 3 indicates that the code

segment demonstrates a common memory leak pattern the C

programming language. The description of the code snippet

provides useful information, including (1) the programming

language of the source code, (2) a comment description of

the pattern of recurring memory leaks, (3) the functionality of

the procedure shown, (4) functionalities of individual method

calls within the procedure, (5) the type of database used by the

program, and (6) the reason of the memory leak. By mining

such code segments and their descriptions, a C programming

language tutorial could include this code in a lesson on fixing

recurring memory leaks, or an IDE could be extended to

identify such memory leak patterns as they are implemented.

From this example, the consequences of using unsuitable loop

exit statements also can be evaluated and avoided. The last

example code description shown in Figure 4 indicates that

the code snippet depicts a security vulnerability in a typical

SQL injection. The description of the code snippet specifies

(1) the functionalities of specific SQL queries, (2) the security

issues inherent of the vulnerable code, (3) the vulnerability

in the code. Without looking carefully, a reader would not be

able to understand the security vulnerability in this example

code without the corresponding description. This code and its

220929292

1 public void testKeySetByValue() {
2 BinaryTree m = new BinaryTree();
3 LocalTestNode nodes[] = makeLocalNodes();
4 Collection c1 = new LinkedList();
 ...

5 m = BinaryTree.initial();
6 c1.clear();
7 for (int k = 0; k < nodes.length; k++){
8 m.put(nodes[k].getKey(), nodes[k]);
9 if (k % 2 == 1)
10 c1.add(nodes[k].getKey());
11 }
12 assertTrue(m.keySetByValue().retainAll(c1));
13 assertEquals(nodes.length / 2, m.size());
 ...

14 m = BinaryTree.initial();
15 c1.clear();
16 for (int k = 0; k < nodes.length; k++){
17 m.put(nodes[k].getKey(), nodes[k]);
18 if (k % 2 == 0)
19 c1.add(nodes[k].getKey());
20 }
21 assertTrue(m.keySetByValue().removeAll(c1));
22 assertEquals(nodes.length / 2, m.size());
 ...
23 }

Fig. 1. A test method with multiple test scenarios.

A major obstacle to extracting API examples
from test code is the multiple test scenarios in a
test method. Fig. 1 depicts such a test method.
Lines 2-4 are the declaration of some data
objects. Lines 5-13 depict a test scenario that
contains the usage of some API methods, such as
keySetByValue, put, and getKey. Lines 14-22
depict another test scenario, which contains a
similar usage to the previous one. Such multiple
test scenarios are quite reasonable when aiming
at covering testing input domains. But they bring
redundant code for API users to read. In fact,
there are actually 200+ code lines containing
similar test scenarios in the test method
in Fig.1. It is necessary to separate different
test scenarios from one test method and cluster
the similar usages to remove redundancy.

Fig. 2: A sample code snippet with description Excerpt from the
paper “Mining API Usage Examples from Test Code” (ICSME ’14)

description could serve as a good lesson in a SQL tutorial

or be used as a pattern in a vulnerability detection tool that

provides feedback about the vulnerabilities found, based on

this description text.

These examples are just a sampling of the kind of infor-

mation that can be learned about mined code snippets in

research articles if the descriptive text can be mined along

with the code snippets to provide the writer’s perspective on

the properties and functionalities of the mined code segments.

Because they originate in research papers, the descriptions

typically include the functionality and properties, and are used

commonly as examples of those properties, which is a rich

kind of information for many purposes.

III. APPROACH

A. Overview of CoDesNPub Miner

Figure 5 presents the phases of our whole process for au-

tomatic preprocessing, classification, identification and mark-

up of research articles. The input document is the research

1 r e c o r d ∗ p ;
2 i n t b a d r e c o r d i d ;
3 whi le (h a s n e x t ()) {
4 i f (s e a r c h c o n d i t i o n != n u l l)
5 p = g e t n e x t () ;
6 e l s e
7 p = s e a r c h f o r n e x t (s e a r c h c o n d i t i o n) ;
8 i f (i s b r o k e n (p)) {
9 b a d r e c o r d i d =p−>i d ;

10 break ;
11 }
12 f r e e (p) ;
13 }
14 . . . / / o p e r a t i o n s on b a d r e c o r d i d
15 re turn ;

Fig. 1. The code of procedure check_records

To understand the difficulty of fixing a memory
leak, let us take a look at an example program
in Fig. 1. This is a contrived example mimicking
recurring leak patterns we found in real C
programs. Procedure check_records checks
whether there is any bad record in a large file,
and the caller could either check all records,
or specify a search condition to check only part
of records. In this example, both get_next and
search_for_next will allocate and return
a heap structure, which is expected to be freed
at line 12. However, the execution may break out
the loop at line 10, causing a memory leak.

Fig. 3: A sample code snippet with description Excerpt from the
paper “Safe Memory-leak Fixing for C Programs” (ICSE ’15)

article, which may be a conference or a journal publication,

in pdf format. The preprocessing phase renders the entire input

document into plain text. Existing pdf-to-text converters can be

used for this phase, such as pdftotext [17], convertmypdf [18],

convertpdftotext [19], etc. making sure they can handle both

single and double column formatting of articles. Since some

code segments are embedded into articles as images, this phase

leverages existing image-to-text converters such as ocrconvert

[20], abbyyfinereader [21], etc. to process the images into text

so all code segments can be identified.

The first text analysis phase partitions the content such

that each block is classified into a single category of either

source code or natural language text. Various tools are already

developed by researchers to do similar content classification

tasks [10], [1], [4], [5]. In this paper, we use a tool that takes

the previously created plaintext as input, and outputs a tagged

XML file with separate tags for natural language text and code

segments.

The main focus of this paper is the code description miner,

which is comprised of two phases. The first phase identifies

code-related seeds, which are natural language sentences that

are directly related to an embedded code segment through

either the content or location of the natural language text.

The second phase identifies natural language text neighboring

code-related seeds that is highly likely to also be containing

useful information about the code, but not directly identifiable

without the seed text. We refer to these two kinds of code-

related text as seeds and neighbors. We use linguistic and

221939393

Example 1. A simple example of a SQL injection is
shown below:

HttpServletRequest request = ...;

String userName = request.getParameter("name");

Connection con = ...

String query = "SELECT * FROM Users " +

" WHERE name = ’" + userName + "’";

con.execute(query);

This code snippet obtains a user name
(userName) by invoking
request.getParameter("name")and uses
it to construct a query to be passed to a
database for execution (con.execute(query)).
This seemingly innocent piece of code may allow
an attacker to gain access to unauthorized
information: if an attacker has full control of
string userName obtained from an HTTP request,
he can for example set it to ’OR 1 = 1;--.
Two dashes are used to indicate comments in the
Oracle dialect of SQL, so the WHERE clause of the
query effectively becomes the tautology
name = ’ ’ OR 1 = 1. This allows the attacker
to circumvent the name check and get access
to all user records in the database.

Fig. 4: A sample code snippet with description Excerpt from the paper
“Finding Security Vulnerabilities in Java Applications with Static Analysis” (SSYM’05)

structural features of the text and embedded code segments to

identify and map the code descriptions to the associated code

snippets in the document. The system can be implemented to

output either as an XML version of the original article with

the code segments and related seeds and neighbors marked

up, or a set of extracted code segments and related seeds

and neighbors for a database of mined code examples with

descriptive information.

B. Code Description Identification

To develop our automatic code description identification

technique, we analyzed the text of randomly selected computer

science research articles from ACM and IEEE digital libraries,

which collectively included over 200 code examples. Based on

our manual inspection of both text related to the code segments

and text not related to the code segments, we developed a

set of heuristics that focus on features of sentences, including

location and lexical and phrasal information. We first describe

our individual heuristics for identifying sentences as code

description and then describe how we combine the heuristics

to perform code description identification.

References Figure Containing Code. While some code

segments in research articles are embedded within the run-

ning text, many are included as separate figures or listings.

Typically, when code appears as a figure or listing, authors

will refer the reader to the code they are discussing by using

phrases such as “In Figure 1, ...” or “Listing 1 ...”. These

references are very accurate cues for an automatic system to

identify sentences related to the code segment, when we are

able to identify that the figure being referenced is indeed a

code segment.

The ReferencesCodeFigure heuristic identifies sentences

that contain the word “figure” or “listing”, and uses the figure

or listing number reference to check whether the referenced

figure has been classified as code. For example in Figure

1, ReferencesCodeFigure would identify the sentence, “Next,
consider the JavaScript snippet in Figure 2, where a developer
is trying to make a web app that can take a photo and inject
it into an element in an HTML document.”
Located Immediately Before or After Inlined Code. Some-

times, authors of research articles place their code examples

directly inlined within the running text, similar to the use of

code segments in online forums and emails. When this occurs,

it is most likely that they are discussing the code segment in

sentences just before or just after (or both before and after)

the code segment itself.

The TextBefore and TextAfter heuristics identify the sen-

tences immediately before and immediately after any inlined

code segment as potential code descriptions, respectively.

For example, in Figure 2, TextAfter would extract “A major
obstacle to extracting API examples from test code is the
multiple test scenarios in a test method.”, since this is the

sentence that occurs immediately after the code segment in

the document.

Without combining with other heuristics, these heuristics

can be inaccurate if the author always describes code segments

before or after and not both locations. These heuristics capture

the relative location only of sentences surrounding inlined

code. Additional sentences in the nearby location will be con-

sidered by the neighborhood sentence identification heuristics.

Contains Code Identifiers. Sentences describing code seg-

ments in a research article often contain code identifiers from

the associated code segment. The use of code identifiers is

particularly common when describing the steps comprising

the code, explaining the functionality of each statement or

block. Thus, the ContainsCodeIdentifiers heuristic identifies

all the code segments in a research article that contain a word

that also appears in any of the code segments as a user-

defined identifier. This heuristic requires tokenization of the

code segments within the document, creation of a dictionary of

variable, method, and class names for each code segment, and

removal of keywords from those dictionaries. The heuristic

identifies and maps sentences to associated code segments

based on occurrences of the dictionary names in the sentence.

For example in Figure 3, ContainsCodeIdentifiers would

identify the sentence “In this example, both get next and
search for next will allocate and return a heap structure,
which is expected to be freed at line 12.”, based on the pres-

ence of the code identifiers “get next” and “search for next”

in the code segment described by this sentence. This heuristic

has the potential to be inaccurate when code segments use

identifiers that are commonly used as regular words in sen-

tences.

References Code By Position. Authors somtimes use specific

cue words or phrases pertaining to software engineering and

development when describing code segments in research ar-

ticles. ReferencesCodeByPosition identifies the sentences that

222949494

Fig. 5: Overview of CoDesNPub Miner

have specific cue words or phrases that suggest that a sentence

is describing a code segment in the document. This heuristic

looks for phrases such as “...in the following code...”, “in the

running example”, etc. Specifically, this heuristic aims to iden-

tify sentences containing code-indicating words such as ‘code’,

‘method’, ‘loop’, ‘Javascript’, etc. Based on the adjective in

the phrase, it searches either before or after the sentence for a

code segment located in the designated relative position near

the neighboring two paragraphs to the sentence, to confirm

that the sentence is referring to a code segment. For example,

in Figure 4, ReferencesCodeByPosition would identify the

sentence, “This code snippet obtains a user name (user-
Name) by invoking request.getParameter(“name”)and uses it
to construct a query to be passed to a database for execution
(con.execute (query)).”

1) Putting It All Together: A given sentence may be iden-

tified as a potential code description sentence by more than

one heuristic. For instance, a given sentence might say “In the

code below,” and also be located immediately before a code

segment, or a sentence might mention a code identifier and

include the phrase “In our example code.” A given sentence

might contain more than one identifier which is a stronger

indicator than just one identifier that might occur in more than

one segment.

We combine the heuristics by assigning a score to a sentence

each time a heuristic indicates that it is potentially a code

description. We pose two scoring schemes as follows:

• Equal Scores: All cues are treated as equally contributing

to the potential for a sentence to be a code description.

Each instance of any heuristic being triggered for a given

sentence results in adding a score of 1 to the total score

for that sentence.

• Accuracy-based Scores: Some heuristics such as Refer-
encesCodeFigure are highly likely to accurately identify

a sentence as a code description whereas others could be

less accurate, such as TextBefore and TextAfter. Thus, this

scoring scheme assigns different scores to each instance

of different heuristics depending on the basis of our

observations of relative accuracy during our work with the

development set. Based on our development set analysis,

the final scores for each heuristic for the best scoring

scheme are a score of 3 for ReferencesCodeFigure, a

score of 2 each for ContainsCodeIdentifiers and Ref-
erencesCodeByPosition, and a score of 1 for each of

TextBefore and TextAfter.

Each heuristic is applied to the document resulting in a

score for each sentence. The heuristics can be applied in

any order as their application order does not affect the final

scoring. A threshold is used with the final scores to classify

a given sentence as code description. In our experimental

study, we perform a threshold analysis, including a threshold

that requires only one heuristic to be triggered to consider

a sentence as a code description, up through requiring some

combination of heuristics that achieves a high score. We

evaluate the various precisions and numbers of sentences

identified with different thresholds and scoring schemes.

2) Identifying Neighboring Code-related Text: Our obser-

vations during development revealed that there may be neigh-

boring text to the code description sentences identified by the

heuristics that is also related, but the heuristics do not indicate

that directly. The additional sentences often describe finer

details such as the intuition for implementing the code, etc. and

are important for better understanding and reuse of the same

code example. Figure 4 shows an example where the code-

related neighboring text would be the sentence “This allows
the attacker to circumvent the name check and get access to
all user records in the database.”. Identifying this sentence is

important since it describes the consequence of the security

vulnerability threat in that example code, but the heuristics

with the textual cues would not identify this sentence.

Our manual analysis suggested that that if a part of a

paragraph of text contains sentences identified by the heuristics

to describe a code segment, then the entire paragraph often

describes the code segment extensively. However, not every

paragraph with an identified seed sentence was entirely a

code description. Therefore, we explored several percentages

of paragraph sentences as minimum numbers of seed sentences

needed to consider the whole paragraph as code description

text.

• At least one sentence in the paragraph matches one or

more heuristics to identify text directly related to code.

223959595

• At least (25%, 50%, or 75%, respectively) of the total

number of sentences in the paragraph matches one or

more heuristics to identify text directly related to code.

C. Code Description Identification Example

Consider a paragraph extracted from a paper published in

ICSE 2014. We consider each heuristic on each sentence of

this paragraph as our code description identification process

works at sentence granularity. We describe the example using

the accuracy-based scoring scheme.

Fig.5 shows a typical test method of this pattern.
The method tests a set of basic functionality of
API class BasicAuthCache, including the method
put, get, remove and clear. There are three test
scenarios in the method: line 4-5, line 6-7,
line 8-10. They share two data objects, cache and
authScheme. Their method invocation sequences
are not same and there is no unified test target
method. But there is a common subsequence
among three method invocation sequences, i.e.,
the invocations of get and HttpHost.

Excerpt from the paper “Mining API Usage Examples from Test Code” (ICSME ’14)

ReferencesCodeFigure would identify the first sentence as

code description due to the presence of the word “Fig.5”,

which is the figure number for the code segment described in

this paragraph. We would assign a score of 3 to this sentence.

The next sentence contains code identifiers “BasicAuthCache”
and “get”, found in the described code segment of the research

article. So ContainsCodeIdentifiers would indicate the second

sentence is code description and assign a score of 2. The

third sentence would not be identified as seed of a code

description by any or our heuristics. The fourth sentence would

be identified by ContainsCodeIdentifiers since it contains

the code identifiers “cache” and “authScheme”, found in

the described code segment. Hence, this sentence would be

assigned a score of 2. The fifth sentence would be identified by

ReferencesCodeByPosition due to the presence of the phrase

“method invocation”, and assigned a score of 2. The next

sentence would also be identified by ContainsCodeIdentifiers
since it contains the code identifiers “get” and “HttpHost”.

However, the same sentence would also get an additional score

by TextBefore since this sentence is found immediately above

the code segment that it describes. Hence, the last sentence

would be assigned a score of 2 by ContainsCodeIdentifiers,

and add a score of 1 for TextBefore, making the total score of

this sentence 3. At this point, all the seeds are identified, and

the minimum of at least 50% of the total number of sentences

in the paragraph to include the whole paragraph would mark

the whole paragraph as code description text.

IV. EVALUATION

We designed our evaluation to answer the research question:

RQ1: How effective is our approach to automatically iden-

tify code descriptions in natural language text of research

articles?

In addition, we also collected data to answer two questions

about how code segments are described in research articles.

Namely, we collect data to answer:

RQ2: What kinds of information are available in natural

language text describing code segments in research articles?

RQ3: How do authors typically reference code segments

within their code description text in research articles (i.e.,

What cues are most prominent?)

A. Evaluation Design

1) Implementation: Our code description identification pro-

cess is fully automatic. It takes XML with markup classifi-

cation of code and natural language text of a single article

as input and outputs XML with additional markup for code

description text, as well as data for our evaluation study. Due

to the inaccuracies of the tools for pdf-to-text conversion and

OCR-to-text conversion that we experienced, the preprocess-

ing is currently semi-automatic. That is, we apply current state

of the art tools to convert to text, but then manually clean up

the inaccuracies, so that our evaluation study is not affected

by the inaccuracies of the preprocessing.

2) Subjects and Measures: The subjects in our study are

research articles (disjoint from our development set) that

contain in total 100 code segments, selected from ACM DL

and IEEE Xplore in the domain of software engineering.

Because many articles have more than one code segment,

our final evaluation set consists of 4 journal papers and 4

conference papers published between 2011 through 2015.

To answer RQ1, we measure the effectiveness of the overall

precision and recall of the code description identification, and

also the precision of the seed identification. We do not compute

recall of the seed identification because we did not want to

reveal details of our approach to the human annotators in

creation of the gold set. Precision is calculated by determining

the percentage of automatically identified code description

sentences that are marked as code-related descriptions by

human judges. Precision of the seed heuristics is computed

similarly, instead focusing on only those automatically iden-

tified seed sentences. Recall of the overall code description

identification is computed by determining the percentage of

all the sentences that describe the code segments in the study

(as identified by human judges) that are also identified as code

descriptions by the automatic technique.

To answer RQ2, we computed the frequency that each seed

heuristic was triggered, including counts for each time a given

heuristic is triggered more than once on a given sentence.

To answer RQ3, one of the authors used the results from

a previous study [22] and manual analysis of the human

annotated sentences to develop a labeling scheme to code

the annotated sentences. We defined six major categories of

labels, or codes, and twenty sub-labels for the observed code

properties as described in Table IV. RQ3 is addressed by

coding each annotated sentence and computing the frequency

of occurrence of each label in the subject set of research

articles.

3) Methodology: We created a gold set for our evaluation

by recruiting human annotators. Our human annotators con-

sisted of 10 computer science students - 9 graduate students

and 1 senior undergraduate researcher. These participants had

224969696

no knowledge of our techniques, are not authors on this

paper, and are equipped with prior computer science and

programming experience.

We designed a set of instructions and had two of the

participants test the annotation procedure while keeping a note

of the time they required for each code segment. Based on the

timing results, each of the ten judges was assigned research

papers for 20-30 of the randomly selected code segments. To

account for potential subjectivity of human opinion, each of

the 100 code segments was analyzed by two judges separately.

Therefore, in total, we collected 200 annotated objects for this

evaluation study. Since there were inconsistencies in some of

the human annotations, we considered any sentence that either

annotator highlighted in our evaluation as a code description.

Specifically, the judges were instructed to annotate natural

language text in the papers with the following instructions,

“Your task is to review several assigned research

papers and highlight any text in the entire paper that

you think is describing an embedded code segment

or any property of the code segment (highlighted in

yellow in the document), and label each highlighted

text with the related code segment number”.

For our evaluation data set, the humans annotated 745

sentences as code descriptions. The gold set does not include

any captions. We did not ask the human judges to highlight

the captions of the figures containing code segments in the

evaluation set, since we assume that a caption to a figure

containing code is always relevant to that code, and we did

not want the captions to bias the results.

B. Results and Discussion

We organize our evaluation results by research questions.

RQ1: How effective is our approach to automatically
identify code descriptions in natural language text of
research articles?

As part of evaluating the effectiveness, we considered

several configurations for code description identification: (1)

Should all seed heuristics be treated equally or with different

scores reflecting their perceived accuracy? (i.e., What scoring

approach provides better precision?) (2) For each of the seed

heuristic scoring schemes, which threshold provides higher

precision? (3) How does the minimum number of seed sen-

tences used to identify neighboring code-related text affect the

precision and recall of CoDesNPub Miner? Note that we are

most interested in higher precision than recall because we want

the identified descriptions to indeed be descriptive, whereas

missing some descriptions is not critical.

Table I presents results to answer the first two research

subquestions, by reporting the precision for the two seed

scoring schemes under three thresholds. The precision is

the same for threshold of 1 because it indicates that only

one heuristic is needed to identify a seed, in either scoring

scheme. Higher thresholds with equal scores mean at least

2 or 3 heuristics, respectively, need to indicate a seed. In

the equal scoring scheme, requiring two heuristics for a seed

Scoring Scheme
Thresholds

1 2 3

Equal score (=1) 62.69 80.26 71.42

Accuracy-based score 62.69 69.33 72.89

TABLE I: Precision of seed heuristics (Scoring: References

Figure Containing Code:3, Located Immediately Before or

After Inlined Code:1, Contains Code Identifiers, References

Code By Position:2)

Minimum # of Seeds Precision Recall

1-24% 39.05 70.20

≥ 25% 53.41 50.33

≥ 50% 66.04 28.45

≥ 75% 68.30 20.53

TABLE II: Effectiveness of code description identification

with different schemes to identify neighboring code-related

text

identification provides the highest precision, in fact, higher

than any of the thresholds with the accuracy-based schemes.

Table II addresses the last research sub-question by report-

ing precision and recall for different neighboring code-related

text identification using the best scoring and threshold com-

bination for identifying seeds. Table II shows results for four

minimum number of seed sentences needed to consider the

whole paragraph as code description text. As expected, the pre-

cision is higher at the higher minimums (≥50% and ≥75%),

with a tradeoff of reduced recall. With higher precision in the

identification as a priority over missing descriptions, the higher

minimums would be used.

Our qualitative analysis focuses on: When our system is not
effective, what is the breakdown between, and the character-
istics of, incorrectly identified code descriptions and missed
code descriptions? We examined the evaluation set where

our best configuration either missed code descriptions or

incorrectly identified code descriptions. There exist 71 out

of 224 sentences (31%) that were identified incorrectly as

code descriptions, and 592 out of 816 sentences (72%) that

the human judges indicated described code examples, but the

system missed them. Table III shows examples from each

of these categories along with some correctly identified code

description sentences.

Analysis of the sentences incorrectly identified as code de-

scriptions indicates that these sentences were either describing

an algorithm (or pseudo code) or referring to figures with

statistical analysis from experiments in the article. In the third

example in Table III, the author is explaining the results of

an experiment using figures containing charts. This sentence

is identified using our seed heuristic CodeFigureListing. Our

tool is currently not able to discard a sentence that describes

figures containing statistical analysis such as tables or charts.

In the fourth example, the author explains the intuition behind

implementing a functionality. Although,this sentence does

not describe a code segment specifically, it gives us some

information about the implementation, which might be useful

225979797

Identified correctly as code descriptions
First, we notice that EVOSUITE uses the method toString rather than getRootElementName in the assertion.

Listing 9 shows an example of three statements that were single statement blocks after the first phases, but can be merged into a single block
because they have similar RHSs.
Identified incorrectly as code descriptions
The results of our initial study are summarized in the form of boxplots in Figure 2, and detailed statistical analysis is presented in Table (a)
for Option, Table III (b) for Rational, and finally Table III (c) for DocType.
Since our choice of a particular algorithm may not match what the user needs , having the ability to add user-defined functions was important.

Missed code descriptions
Meanwhile, if it appears in a requires clause (i.e., the precondition of the updated version), E should be evaluated in the pre-state of the
previous version (i.e., (σ1, h1)).
Such a difference is captured in the two topmost rules in Figure 5 (c) where notations “ensures” and “requires” designate the clause in which
a prev expression appears.

TABLE III: Examples of Analyzed Code Description Sentences

for building code recommendation systems.

Our analysis of the sentences where CoDesNPub Miner-

missed sentences describing code segments revealed some

limitations of using a system based only on features of phrases

contained in sentences. The fifth example in Table III contains

assumptions of specific code implementation, explaining the

pre-conditions needed before implementing an algorithmic

step in the code. Absence of phrases indicating explicit men-

tion of code implementation accounted for the tool missing

to identify such sentences. Lastly, in the sixth example, the

figure referred to in this sentence does not contain real code

examples, but rules for an implementation. This sentence

contains information about the rationale for implementing a

code, which our tool fails to identify, again due to absence of

code specific phrases in the sentence.

RQ2: What kinds of information are available in natural
language text describing code segments in research arti-
cles?

Figure 6a and Figure 6b depict our frequency distribution

of the kinds of information described in the natural language

text that was annotated in our gold set, as coded by our

labeling scheme and sub-labeling, respectively. Figure 6b

indicates that Methodology information is the most prevalent

kind of information, which shows that the main purpose of

mining code examples with descriptions from articles can be

to explain the aspects of their implementation. The second

most prevalent kind of information is Rationale, which shows

that authors also explain why a code segment is implemented

in a particular way, which could be valuable meta-data for a

mined code example for learning.

These results also suggest that research articles rarely

contain overly complex code examples, since they mostly

describe novel ways to address a problem rather than going

into the details of code complexity. Looking beyond these two

categories, we see that a wide variety of information can be

gained from descriptions associated with code segments in

digital libraries.

RQ3: How do authors typically reference code segments
within their code description text in research articles (i.e.,
What cues are most prominent?)

The relative frequency of each feature used to indicate

Labels Sub-Labels Description
Programming

Language
Programming language

Design Framework Framework used
Time/Space
Complexity

Code complexity

Data Structure Data structures or variable types
Control Flow Types of control statements used

Structure Data Flow Data flow chains included
Lines of code Length of code

Rationale Why being implemented in this way
Functionality What is being implemented
Methodology How functionality is implemented

Explanatory Output of
code

Results of running code

Similarity
Syntactic or semantically similar code

blocks
Modification Change(s) to existing code

High Code is clean and understandable
Clarity Low Code is unclear or overly complex

Efficient Better/efficient code example
Efficiency Inefficient Inefficient code example

Assumptions
Conditions to be met to ensure

correctness
Compilation Code that fails to compile

Erroneous Runtime
Contains runtime errors or exceptions

thrown

TABLE IV: Description of labels and sublabels

code description text is shown in Figure 7, which depicts

that References Figure Containing Code is the most prevalent

heuristic. The next prevalent heuristic is Neighboring Code-
related Text which helps in identifying sentences that describe

less obvious details about code segments.

C. Threats to Validity

Our subjects are selected from both journal and conference

papers in software engineering, across different years from

ACM DL and IEEE Xplore digital libraries, which contain

millions of full-text documents of publications. The results

may not transfer to papers from different disciplines in com-

puter science; we chose publications in the field of software

engineering as we believe these contain a large number of

analyzable code segments.

One possible threat could be programming language de-

pendence. The technique we used to identify code segments

226989898

(a) Frequency of labels (b) Frequency of sub-labels

Fig. 6: Kinds of information in research articles

in unstructured documents is capable of identifying code

segments in different programming languages from documents

containing code segments and natural language. All of our

heuristics for extracting code descriptions are also program-

ming language independent. Our heuristic ReferencesCodeBy-
Position uses a manually created dictionary of words implying

description of code segments. To create this dictionary, we

have selected papers in our evaluation set that contain code

examples in various programming languages such as Java,

C++, C, Python, etc.

Fig. 7: Relative frequency of each feature indicating code

description text

Research papers often interleave pseudocode and code frag-

ments; however, CoDesNPub miner is not able to distinguish

between pseudocode and code fragments. It identifies all code

fragments in a research paper, and also cannot differentiate

between novel code contributions and code segments that are

used only as examples in an empirical study. Our datasets

for development and evaluation consist of papers that do

not contain pseudocode. We plan to extend our approach to

identify both code fragments and pseudocode in our future

work.

As with any study based on human annotators for estab-

lishing the ground truth, there might be some cases where the

humans may not have correctly annotated the descriptions for

the code segments. To limit this threat, we ensured that the

human judges had considerable programming experience and

research paper reading experiences, and we also ensured that

each code segment was judged by at least two judges, and

when they disagreed, we considered any sentence that either

annotator highlighted in our evaluation.

The dataset used for evaluating CoDesNPub consisted of a

total of 8 papers including both journal and conference publi-

cations. Considering the amount of research work produced

in IEEE and ACM publications for the period of 4 years

(2011-2015), it is possible that scaling to more than 100 code

segments in our evaluation set might lead to different results.

However, we needed to make the human annotation work

reasonable to recruit judges. We will expand the evaluation

study in the near future with more participants, and research

papers containing more code segments.

V. RELATED WORK

The most related work to this research is in collecting

and analyzing information from sets of research articles,

identification of code snippets from unstructured documents,

and identification of any textual descriptions associated with

embedded code snippets.

Analyzing Collections of Research Articles. Cruzes et. al

[14] ran an entity recognition tool called Site Content Ana-

lyzer on software engineering papers to analyze the linguistic

features of the documents such as word density and frequency.

Based on the results, they claim that information extraction

techniques like text mining can support systematic reviews and

creation of repositories of SE empirical evidence. Researchers

have analyzed repositories of research articles to support their

227999999

evaluations. For example, Siegmund et. al [23] discussed the

tradeoff between internal and external validity and replication,

complemented with a literature review about the status of

empirical research in software engineering. Kampenes et. al

[24], [25] reported systematic reviews of controlled and quasi-

experiments published in major software engineering proceed-

ings. They investigated the selection bias, practice of effect

size reporting, summarized standardized effect sizes detected

in the experiments, and provided advice for improvements

based on the results. Tichy et. al [26] discussed the lack of

experimentally validated results and quantitative evaluations

in computer science journals, supported by a survey of 400

research articles.

Code Segment Extraction. Bacchelli et. al. [1] used

lightweight regular expression-based techniques to identify

code blocks in emails. Their features were lexical, focusing on

programming language specific characteristics such as special

characters and keywords and end of line markers. Their eval-

uation suggests that using lightweight methods are to be pre-

ferred over heavyweight techniques for source code extraction

from emails. Tang et al. [2] filtered out non-NL text including

email headers, signatures, and code-related content (stack

traces, patches, and source code snippets) before cleaning the

remaining text with paragraph and sentence detection. They

manually labeled data sets and then used SVM classification

with specific features for each filtering target. Cerulo et. al

[3] introduced an approach, based on Hidden Markov Models

(HMMs), to extract coded information islands, such as source

code, stack traces, and patches, from emails. They trained a

HMM for each category of information contained in the text of

the emails, and used the Viterbi algorithm to recognize whether

the sequence of tokens observed in a text switches among

those HMMs. Evaluation showed an accuracy of 82%-99%.

This approach does not require manual definition of regular

expressions or parsers.

Bettenburg et al. [10] developed a tool called InfoZilla that

identifies and classifies code patches, stack traces, source code,

and enumerated lists in bug reports. They apply specific filters

for each category, using island parsing for identifying source

code. Evaluation showed almost perfect accuracy for each kind

of structure. The approach focuses on bug reports, all with

the same programming language used in the code snippets,

patches, and stack traces, and would require developing new

parsers to handle a broader class of developer documentation.

Subramanian et. al. [16] performed analyses of source code

snippets found in Stack Overflow, constructing an Abstract

Syntax Tree (AST) for each code snippet and then parsing

to effectively identify specific API usage. Building on their

previous work [16], Subramanian et. al. [6] developed an

iterative, deductive method of linking source code examples to

API documentation. Rigby et. al [5] developed a tool that uses

an island parser to identify code elements in a Stack Overflow

post. Evaluation on documents that contain over 7058 distinct

tags on StackOverflow showed an average precision and recall

of 0.92 and 0.90, respectively. These techniques are also

applicable to extract code segments from research articles.

Code Description Identification. Panichella et. al [4] devel-

oped a feature-based approach to automatically extract method

descriptions from developer communications in bug tracking

systems and mailing lists. Evaluation on two open source

systems indicated that the approach is able to extract method

descriptions with a precision up to 79% for Eclipse and

87% for Lucene. Vassallo et. al [27] built on their previous

work [4], to design a tool that extracts candidate method

documentation from StackOverflow discussions, and creates

Javadoc descriptions. Their tool is able to extract descriptions

for 20% and 28% of the Lucene and Hibernate methods with

a precision of 84% and 91% respectively.

Wong et. al [7] proposed an automatic comment generation

approach, which mines comments from Stack Overflow, and

uses the code-description mappings in the posts to automati-

cally generate descriptive comments for similar code segments

matched in open-source projects. For Java and Android tagged

Q & A posts, they extracted 132,767 code-description map-

pings, to generate 102 comments automatically for 23 Java and

Android projects. Rahman et. al [28] developed a heuristic-

based technique for mining comments from Stack Overflow

Q & A site for a given code segment. Evaluation on 292

Stack Overflow code segments and 5,039 discussion comments

showed that their approach has a recall of 85.42%. Most of

these systems focused on identifying source code descriptions

from Stack Overflow posts, where the text describing the

code is always found next to the code snippet. StackOverflow

posts also have specific XML-tagged formats, which makes

the extraction of the information straightforward.

VI. CONCLUSION AND FUTURE WORK

This paper takes a first step towards unleashing the potential

to mine the vast number of computer science articles in digital

libraries for code segments that come with useful descrip-

tive information about their functionality and properties. We

present and evaluate the first technique to automatically iden-

tify natural language descriptions of code segments embedded

within articles, where code segments can be separated as

figures that are not located next to their descriptive text. Our

evaluation study indicates that we can achieve precision of

68.30% with recall of 20.53% with a single configuration of

scoring and threshold scheme, which is promising. Analysis

of the information available in the descriptions shows that a

variety of information about code segments could be learned.

Future work includes fully automating the front-end pre-

processing of articles, more extensive evaluation and study

with other types of articles and different domains, and more

research to improve the precision and recall of the automated

description identification.

ACKNOWLEDGMENT

This research is supported by the National Science Founda-

tion under Grant No.1422184 and the DARPA MUSE program

under Air Force Research Lab contract no. FA8750-16-2-0288.

228100100100

REFERENCES

[1] A. Bacchelli, M. D’Ambros, and M. Lanza, “Extracting source code
from e-mails,” in Program Comprehension (ICPC), 2010 IEEE 18th
International Conference on, June 2010, pp. 24–33.

[2] J. Tang, H. Li, Y. Cao, and Z. Tang, “Email data cleaning,” in
Proceedings of the Eleventh ACM SIGKDD International Conference
on Knowledge Discovery in Data Mining, ser. KDD ’05. New
York, NY, USA: ACM, 2005, pp. 489–498. [Online]. Available:
http://doi.acm.org/10.1145/1081870.1081926

[3] L. Cerulo, M. Ceccarelli, M. Di Penta, and G. Canfora, “A hidden
markov model to detect coded information islands in free text,” in Source
Code Analysis and Manipulation (SCAM), 2013 IEEE 13th International
Working Conference on, Sept 2013, pp. 157–166.

[4] S. Panichella, J. Aponte, M. D. Penta, A. Marcus, and G. Canfora,
“Mining source code descriptions from developer communications,”
in Program Comprehension (ICPC), 2012 IEEE 20th International
Conference on, June 2012, pp. 63–72.

[5] P. C. Rigby and M. P. Robillard, “Discovering essential code elements
in informal documentation,” in Proceedings of the 2013 International
Conference on Software Engineering, ser. ICSE ’13. Piscataway,
NJ, USA: IEEE Press, 2013, pp. 832–841. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2486788.2486897

[6] S. Subramanian, L. Inozemtseva, and R. Holmes, “Live api
documentation,” in Proceedings of the 36th International Conference
on Software Engineering, ser. ICSE 2014. New York, NY, USA:
ACM, 2014, pp. 643–652. [Online]. Available: http://doi.acm.org/10.
1145/2568225.2568313

[7] E. Wong, J. Yang, and L. Tan, “Autocomment: Mining question and
answer sites for automatic comment generation,” in Automated Software
Engineering (ASE), 2013 IEEE/ACM 28th International Conference on,
Nov 2013, pp. 562–567.

[8] C. Treude and M. P. Robillard, “Augmenting api documentation
with insights from stack overflow,” in Proceedings of the 38th
International Conference on Software Engineering, ser. ICSE ’16.
New York, NY, USA: ACM, 2016, pp. 392–403. [Online]. Available:
http://doi.acm.org/10.1145/2884781.2884800

[9] J. Montandon, H. Borges, D. Felix, and M. Valente, “Documenting apis
with examples: Lessons learned with the apiminer platform,” in Reverse
Engineering (WCRE), 2013 20th Working Conference on, Oct 2013, pp.
401–408.

[10] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim, “Extracting
structural information from bug reports,” in Proceedings of the 2008
International Working Conference on Mining Software Repositories,
ser. MSR ’08. New York, NY, USA: ACM, 2008, pp. 27–30. [Online].
Available: http://doi.acm.org/10.1145/1370750.1370757

[11] “ACM wiki page,” https://en.wikipedia.org/wiki/ Associa-
tion for Computing Machinery.

[12] “IEEEXplore wiki page,” https://en.wikipedia.org/wiki/IEEE Xplore.

[13] “ICSE publication history,” http://dl.acm.org/event.cfm?id=RE228
&tab=pubs&CFID=723067040&CFTOKEN=52119863.

[14] D. Cruzes, M. Mendonça, V. Basili, F. Shull, and M. Jino, “Automated
information extraction from empirical software engineering literature:
Is that possible?” in Proceedings of the First International Symposium
on Empirical Software Engineering and Measurement, ser. ESEM ’07.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 491–493.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1302496.1302980

[15] G. Petrosyan, M. P. Robillard, and R. De Mori, “Discovering information
explaining api types using text classification,” in Proceedings of the
37th International Conference on Software Engineering - Volume 1,
ser. ICSE ’15. Piscataway, NJ, USA: IEEE Press, 2015, pp. 869–879.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2818754.2818859

[16] S. Subramanian and R. Holmes, “Making sense of online code snippets,”
in Mining Software Repositories (MSR), 2013 10th IEEE Working
Conference on, May 2013, pp. 85–88.

[17] “pdftotext online tool,” http://pdftotext.com.

[18] “convertmypdf online tool,” http://www.convertmypdf.net/.

[19] “convertpdftotext online tool,” http://www.convertpdftotext.net/.

[20] “ocrconvert ocr tool,” http://www.ocrconvert.com/.

[21] “abbyyfinereader ocr tool,” https://www.abbyy.com/en-us/finereader/.

[22] P. Chatterjee, M. Nishi, K. Damevski, V. Augustine, L. Pollock, and
N. Kraft, “What information about code snippets is available in different
software-related documents? an exploratory study,” in Proceedings of the

24th IEEE International Conference on Software Analysis, Evolution,
and Reengineering (SANER’17), Feb. 2017.

[23] J. Siegmund, N. Siegmund, and S. Apel, “Views on internal and
external validity in empirical software engineering,” in Proceedings of
the 37th International Conference on Software Engineering - Volume
1, ser. ICSE ’15. Piscataway, NJ, USA: IEEE Press, 2015, pp. 9–19.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2818754.2818759

[24] V. B. Kampenes, T. Dybå, J. E. Hannay, and D. I. K. Sjøberg,
“Systematic review: A systematic review of effect size in software
engineering experiments,” Inf. Softw. Technol., vol. 49, no. 11-12, pp.
1073–1086, Nov. 2007. [Online]. Available: http://dx.doi.org/10.1016/j.
infsof.2007.02.015

[25] V. B. Kampenes, T. Dybå, J. E. Hannay, and D. I. K. Sjøberg,
“A systematic review of quasi-experiments in software engineering,”
Inf. Softw. Technol., vol. 51, no. 1, pp. 71–82, Jan. 2009. [Online].
Available: http://dx.doi.org/10.1016/j.infsof.2008.04.006

[26] W. F. Tichy, P. Lukowicz, L. Prechelt, and E. A. Heinz, “Experimental
evaluation in computer science: A quantitative study,” J. Syst.
Softw., vol. 28, no. 1, pp. 9–18, Jan. 1995. [Online]. Available:
http://dx.doi.org/10.1016/0164-1212(94)00111-Y

[27] C. Vassallo, S. Panichella, M. Di Penta, and G. Canfora, “Codes: Mining
source code descriptions from developers discussions,” in Proceedings
of the 22Nd International Conference on Program Comprehension,
ser. ICPC 2014. New York, NY, USA: ACM, 2014, pp. 106–109.
[Online]. Available: http://doi.acm.org/10.1145/2597008.2597799

[28] M. Rahman, C. Roy, and I. Keivanloo, “Recommending insightful
comments for source code using crowdsourced knowledge,” in Source
Code Analysis and Manipulation (SCAM), 2015 IEEE 15th International
Working Conference on, Sept 2015, pp. 81–90.

229101101101

