
Automatic Identification of Informative Code
in Stack Overflow Posts

Preetha Chatterjee
preetha.chatterjee@drexel.edu

Drexel University
Philadelphia, PA, USA

ABSTRACT
Despite Stack Overflow’s popularity as a resource for solving coding
problems, identifying relevant information from an individual post
remains a challenge. The overload of information in a post can
make it difficult for developers to identify specific and targeted
code fixes. In this paper, we aim to help users identify informative
code segments, once they have narrowed down their search to a
post relevant to their task. Specifically, we explore natural language-
based approaches to extract problematic and suggested code pairs
from a post. The goal of the study is to investigate the potential
of designing a browser extension to draw the readers’ attention
to relevant code segments, and thus improve the experience of
software engineers seeking help on Stack Overflow.

KEYWORDS
Stack Overflow, Mining Software Repositories, Natural Language
Processing

ACM Reference Format:
Preetha Chatterjee. 2022. Automatic Identification of Informative Code in
Stack Overflow Posts. In Proceedings of the 1st International Workshop on
Natural Language-based Software Engineering (NLBSE’ 2022). ACM, New
York, NY, USA, 4 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Throughout all phases of software development and maintenance,
developers seek help for avoiding and fixing errors in their appli-
cations. A search for a specific error on a Q&A forum or Google
search engine would return a list of links related to the query. To
gain an insight into the problem, the developer has to click into and
read a considerable number of posts to understand the cause of the
error and make suitable bug fixes. Additionally, Q&A forums often
contain long threads of discussions [18, 21]. Developers include en-
tire classes or methods to provide context for better apprehension
of the problems or suggested solutions. The length of posts could
vary, but presence of noisy and redundant information is prevalent.
In a previous work [5], we observed that a Stack Overflow post
(including only the question and two answers) could contain up
to 240 lines of code. We also found that software engineers focus

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
NLBSE 2022, May 8, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

on only 27% of code in a post to understand and determine how to
apply the relevant information to their context. Identifying targeted
code suggestions from such lengthy code segments is not trivial.

Researchers have studied the problem of finding relevant infor-
mation from Q&A forums [4, 8, 10, 19]. Several techniques and tools
have been developed to help information seekers on Stack Over-
flow, including reformulation of queries [9, 12], high-quality post
detection [13, 20], and automatic recommendation of tags [2, 15],
all targeted at retrieving better search results. Recently, Nadi and
Treude identified essential sentences as cues for navigating Stack
Overflow answers in a post [11]. However, to our knowledge, no
one has investigated how to help information seekers focus their
attention in identifying relevant targeted code changes, once they
have narrowed down their search to a post relevant to their task.

In this paper, we aim to automatically identify informative code
segments in a Stack Overflow post. Specifically, we focus on iden-
tifying the problematic and suggested code pairs from questions
and answers in a post. We consider problematic code to be a code
segment responsible for causing an error or exception, and a sug-
gested code to be the targeted relevant code segment which should
be used in replacement of the problematic code to solve the error.
We explore natural language-based approaches to extract the code
pairs. First, we use linguistic patterns to determine the location of
suggested code in an answer. Next, we use text similarity heuristics
to identify problematic code from the question. The goal of this
study is to investigate the feasibility of designing a highlighting
interface or a browser extension that could draw the readers’ focus
to informative code segments of a Q&A forum post, thus leading
to a better and quicker understanding of the problem and choosing
a solution.

To obtain early feedback on the potential of a highlighting in-
terface to be beneficial for software developers, we conducted a
pilot survey with 25 developers. Our survey consists of 2 parts:
(1) We asked our participants, which parts of the code in a Stack
Overflow post would they recommend highlighting to focus at-
tention quickly? (2) We provided each participant with 4 sample
Stack Overflow posts, where we manually highlighted the mini-
mum amount of code that could be helpful for them to understand
the problem and choose a potential solution. We asked them to
evaluate the usefulness of the highlighted code in the annotated
posts. In response to the first question, the participants suggested
highlighting the specific lines of code in the question that is causing
the error or exception (i.e., problematic code), and the targeted fix
from the suggested code snippets in the answers (i.e., suggested
code). In response to the second question, all participants agreed
that the code highlights could help them understand the problem
quickly and choose a potential solution from a Stack Overflow post.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

NLBSE 2022, May 8, 2022, Pittsburgh, PA, USA Preetha Chatterjee

Title
Polymorphism in Java error:cannot find Symbol

Question
I've just started learning object oriented programming from the book head first java. It
said that polymorphism enables me to create an array of the superclass type and then
have all the subclasses as the array elements. But when I tried writing code using the
same principles it ran into error saying error: cannot find symbol I made the classes the
superclass was animal and the dog class extended the animal class having a fetch
method of its own, but when I referenced the dog variable as animal it did not work
here is the code
The Animal Class
…
The dog Class
…
The Tester Class
public class tester{
public static void main(String args[]){

animal doggie = new dog();
doggie.fetch();
doggie.eat();
doggie.roam(); }}

Answer
When using polymorphism, if you create an instance of the subclass and store its
reference in a variable of superclass type, you can only call those methods on the
newly created instance which are present in the super class.

In your code, you created an instance of dog class and stored its reference
in doggie which is of type animal (super class of dog), In such case, you can't call any
method on dog class instance that isn't available in animal class. fetch method is not
defined in the animal class hence you get the error.
Solution
Either define the fetch method in the animal class
OR
change
animal doggie = new dog();
to
dog doggie = new dog();

Title
Android: Retrieving data from the database issue

Question
I created the following method for retrieving stored settings from the database:

public String getEntry(long rowIndex){
String value = "";

Cursor c = db.query(DATABASE_TABLE, new String[] {KEY_NAME, VALUE},
KEY_NAME + "=" + rowIndex, null, null, null, null);

int columnIndex = c.getColumnIndex(VALUE);
int rowsCount = c.getCount();
if(rowsCount > 0){

String value = c.getString(columnIndex); }
return value; }

On debugging I can see cursor c contains two columns and one row but when it comes
to line

String value = c.getString(columnIndex);
it throws the CursorIndexOutOfBoundsException although columnIndex = 1 which
should point to a valid entry.
Does anyone know what could be wrong here?

Answer
You need to move the cursor to the first row with c.moveToNext() before reading the
value:

public String getEntry(long rowIndex) {
String value = "";
Cursor c = db.query(DATABASE_TABLE, new String[] { KEY_NAME, VALUE },

KEY_NAME + "=" + rowIndex, null, null, null, null);
int columnIndex = c.getColumnIndex(VALUE);
if (c.moveToNext()) {

value = c.getString(columnIndex); }
return value; }

(a) Problematic and Suggested Code in Answer

Title
Polymorphism in Java error:cannot find Symbol

Question
I've just started learning object oriented programming from the book head first java. It
said that polymorphism enables me to create an array of the superclass type and then
have all the subclasses as the array elements. But when I tried writing code using the
same principles it ran into error saying error: cannot find symbol I made the classes the
superclass was animal and the dog class extended the animal class having a fetch
method of its own, but when I referenced the dog variable as animal it did not work
here is the code
The Animal Class
…
The dog Class
…
The Tester Class
public class tester{
public static void main(String args[]){

animal doggie = new dog();
doggie.fetch();
doggie.eat();
doggie.roam(); }}

Accepted Answer
When using polymorphism, if you create an instance of the subclass and store its
reference in a variable of superclass type, you can only call those methods on the
newly created instance which are present in the super class.

In your code, you created an instance of dog class and stored its reference
in doggie which is of type animal (super class of dog), In such case, you can't call any
method on dog class instance that isn't available in animal class. fetch method is not
defined in the animal class hence you get the error.
Solution
Either define the fetch method in the animal class
OR
change
animal doggie = new dog();
to
dog doggie = new dog();

Title
Android: Retrieving data from the database issue

Question
I created the following method for retrieving stored settings from the database:

public String getEntry(long rowIndex){
String value = "";

Cursor c = db.query(DATABASE_TABLE, new String[] {KEY_NAME, VALUE},
KEY_NAME + "=" + rowIndex, null, null, null, null);

int columnIndex = c.getColumnIndex(VALUE);
int rowsCount = c.getCount();
if(rowsCount > 0){

String value = c.getString(columnIndex); }
return value; }

On debugging I can see cursor c contains two columns and one row but when it comes
to line

String value = c.getString(columnIndex);
it throws the CursorIndexOutOfBoundsException although columnIndex = 1 which
should point to a valid entry.
Does anyone know what could be wrong here?

Answer
You need to move the cursor to the first row with c.moveToNext() before reading the
value:

public String getEntry(long rowIndex) {
String value = "";
Cursor c = db.query(DATABASE_TABLE, new String[] { KEY_NAME, VALUE },

KEY_NAME + "=" + rowIndex, null, null, null, null);
int columnIndex = c.getColumnIndex(VALUE);
if (c.moveToNext()) {

value = c.getString(columnIndex); }
return value; }

(b) Problematic Code in Question and Suggested Code in Answer

Figure 1: Examples of Error/Exception-related Posts on Stack Overflow (problematic and suggested code are highlighted)

2 MOTIVATING EXAMPLES
For posts related to errors or exceptions on Stack Overflow, ques-
tioners include entire methods or classes because they are not sure
where the problem lies, and to provide context for others to help
them identify their problem [5]. In this study, we analyzed the an-
swerers’ behavior in providing solutions to those questions. We
observed that some answerers provide targeted bug fixes, pinpoint-
ing where the problem lies. For example, in Figure 1a, both the
problematic code and suggested code are provided in the answer.
However, in other answers as shown in Figure 1b, one or more
code snippets (each often containing multiple lines of code) were
suggested, without identifying the specific lines of code that need to
be changed. Absence of this information makes it difficult for read-
ers to determine if the suggested code is relevant in their current
code focus. Reading and understanding these posts also becomes
arduous and time-consuming.

3 METHODOLOGY
We propose a set of natural language-based approaches to auto-
matically extract problematic and suggested code pairs from Stack
Overflow posts in two scenarios: (1) presence of problematic and
suggested code in the same answer (e.g., Figure 1a), and (2) pres-
ence of problematic code in the question and suggested code in the
answer (e.g., Figure 1b).

3.1 Data Selection
A set of 2000 Stack Overflow posts related to errors and exceptions
were selected using Stack Exchange Data Explorer [6]. Our data
set comes from a wide time range (August 2008 - March 2021). We
retrieved posts that contain the tag ‘Java’ and/or ‘C++’, two com-
monly used programming languages in Stack Overflow 1. Since the
focus of this study is to automatically find bug fixes, we specifically
selected posts where the title contains one or more of the terms
“error”, “exception”, “bug”, similar to the procedure in [5].

To ensure selection of good quality posts, we chose posts with a
total vote count of 3 or higher. We chose posts in which the question
and the answer, each contains at least one code segment. From each
post, we selected the question and the accepted answer. If a post
does not have an accepted answer, the best voted answer is selected.
1581/2000 (79%) posts in our data set contain an accepted answer.

3.2 Identification of Problematic and Suggested
Code Pairs from Answer

When developers suggest short targeted fixes (including both the
problematic and suggested code) in answers, they tend to use some
recurrent textual patterns. These patterns consist of short phrases
or words accompanied with code segments. For instance, in Figure
1a, the code suggestion (highlighted in blue) follows the pattern
"change <problematic code> to <suggested code>".
1https://insights.stackoverflow.com/survey/2021#technology

https://insights.stackoverflow.com/survey/2021#technology

Automatic Identification of Informative Code
in Stack Overflow Posts NLBSE 2022, May 8, 2022, Pittsburgh, PA, USA

We conducted a manual analysis of 2000 Stack Overflow answers
in our data set to identify textual patterns that represent targeted
code suggestions. We followed a qualitative content analysis proce-
dure [14] to understand the structure of targeted code suggestions,
and identified recurrent keywords towards potential textual pat-
terns. Table 1 lists the 5 most common patterns observed in our
data set for identifying the problematic and suggested code pairs
in Stack Overflow answers.

Textual Patterns
change/modify <problematic code> to <suggested code>

replace <problematic code> with <suggested code>
instead of <problematic code> add/try/use <suggested code>

switch <problematic code> to <suggested code>
<suggested code> instead of <problematic code>

Table 1: Textual Patterns to Identify Problematic and Sug-
gested Code Pairs from Answer

3.3 Identification of Problematic Code from
Question and Suggested Code from Answer

When problematic and suggested code pairs are not located in the
same answer, we decompose the problem of code-pair extraction
into two sub-problems. First, we identify suggested code from an-
swers using linguistic patterns. Next, we extract the problematic
code from the question using textual heuristics.

Identification of suggested code from answer: Di Sorbo et al. [16]
observed that developers tend to use recurrent linguistic patterns
while proposing solutions to known problems. Thus, using natural
language parsing, they defined fifty linguistic patterns to identify
‘solution proposal’ sentences in developer emails. First, to investi-
gate the generalizability of Di Sorbo et al.’s linguistic patterns, we
used their replication package of DECA 2 to identify text adjacent
to suggested code in Stack Overflow answers. We found that these
patterns were able to identify some of the instances in our data set.

To improve on the existing technique [16], we aim to identify
short imperative sentences that suggest a solution, i.e., sentences
that start with a verb and followed by its object (e.g., “Perform an
interactive rebase”). We perform chunking [1], to identify parts of
speech and short phrases present in a given sentence, using NLTK
toolkit [3]. We consider a sentence imperative if the root node is
a verb (VB) or modal (MD), or if the first chunk is a verb phrase.
The code located immediately before or after the ‘solution proposal’
sentence is identified as the suggested code in the answer.

Identification of problematic code from question: Researchers have
compared buggy and fixed code snippets in Q&A forums to generate
edit scripts for automated program repair [7, 17]. Based on the
intuition that problematic and suggested code pairs in a post are
similar, we identify the problematic code using textual similarity.
a) First, we extract a list of code elements from the previously
identified suggested code in the answer. Specifically, we isolate each
line of code in the suggested code segment on a newline character
(“\n”), remove code comments and programming language specific
2https://www.ifi.uzh.ch/en/seal/people/panichella/tools/DECA.html

keywords (e.g., ‘abstract’, ‘this’), and then tokenize the code by
splitting on white-space, special characters and camel case using
regular expressions.
b) Next, we determine the approximate location of problematic code
in question. As before, we isolate each line of code in the question
on a newline character, remove code comments and programming
language specific keywords. If one or more code elements found
in the suggested code co-occur in the question code, we extract
that line of code in question as a potential problematic code. Since,
the size of code in a question is often higher than the code in the
answer, this step helps us in reducing the search space and getting
an approximate location of the problematic code in the question.
c) Finally, we measure the textual similarity between each line of
approximate problematic code in the question with each line of
suggested code in answer. Towards generating edit scripts for bug
fixes, Gao et al. [7] proposed a formula to measure code similarity.
They calculate the edit distance between each line, and denote the
length of problematic code as len_problematic, and the length of
suggested code as len_fixed as follows:

𝑆𝑖𝑚 (𝑇𝑒𝑥𝑡) = 1 − 𝑒𝑑𝑖𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒√︁
𝑙𝑒𝑛_𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑎𝑡𝑖𝑐 × 𝑙𝑒𝑛_𝑠𝑢𝑔𝑔𝑒𝑠𝑡𝑒𝑑

We found this similarity measure to be insufficient to identify
problematic code in our data set. Hence, we are exploring a separate
similarity measure. We count the occurrence of common words in
each pair of line of code in question and answer, and normalize the
measure using the following formula:

𝑆𝑖𝑚 (𝑇𝑒𝑥𝑡) = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑐𝑜𝑚𝑚𝑜𝑛 𝑤𝑜𝑟𝑑𝑠√︁
𝑙𝑒𝑛_𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑎𝑡𝑖𝑐 × 𝑙𝑒𝑛_𝑠𝑢𝑔𝑔𝑒𝑠𝑡𝑒𝑑

For each line in suggested code, we select the code in question
with highest textual similarity as the problematic code.

4 EVALUATION: PRELIMINARY SURVEY
To obtain early feedback on the potential of our idea to be beneficial
for software developers, we conducted a pilot survey to understand
"How effective is our approach in helping developers find a relevant
solution to a bug-related issue from a Stack Overflow post?". We
reached out to 25 developers from the software industry by emails.
All 25 survey participants had prior programming experience of
at least 4 years in Java and/or C++. Each participant was asked to
indicate their Stack Overflow usage frequency as: (1) Never (never
heard of it), (2) Seldom (at least once in six months), (3) Periodically
(at least once in a month), or (4) Frequently (at least once a week).
The responses indicate that 18 out of 25 (72%) use Stack Overflow
frequently, 5 out of 25 (20%) use it periodically, and 2 out of 25 (8%)
use it seldom.

For the survey, we manually annotated a set of 100 posts selected
randomly from our data set described in Section 3.1. In each post,
we highlighted specific lines of code that is causing an error or
exception (problematic code), and the lines of code proposed to
fix the issue (suggested code). Figure 1b shows an example of an
annotated post. We provided 4 annotated posts to each of our par-
ticipants, which took them approximately 20 minutes to evaluate.
To gather the participant responses, we designed an online survey
form which consisted of the following questions:

 https://www.ifi.uzh.ch/en/seal/people/panichella/tools/DECA.html

NLBSE 2022, May 8, 2022, Pittsburgh, PA, USA Preetha Chatterjee

(1) Once you have identified a Stack Overflow post relevant to
your question related to an error or exception, which part of
the code in the question and/or answer would you recommend
highlighting to focus attention quickly?

(2) For each of the following annotated posts (provided as pdf),
we have highlighted the minimum amount of code that could
be helpful for you to understand the problem and choose a
potential solution. Do you find the highlighted code useful?
Please select a response from the following options: (1) Not
useful, (2) Somewhat useful, (3) Useful, (4) Very useful.

Since the purpose of the first question in the survey was to gather
developer recommendations about identifying relevant code, it was
framed as a leading question in the form of a short descriptive
text. The second question, intended to assess the usefulness of the
highlights, was of the form single-select multiple choice.

Observations: Responses to question (1) in the survey suggest
highlighting the specific lines of code in the question that is causing
the error or exception, and the targeted fix from the suggested code
snippets in the answers. Below are few excerpts from the responses:

• “In the question, it can help if the section of the code that is
causing the problem is highlighted. In the answer, highlighting
the exact lines of code that should solve the problem, can help
focus attention. Highlighting specific error messages could also be
useful.”

• “If a huge code snippet is given, it is helpful to highlight the section
of the code that throws the exception... Sometimes the answer
attached to the post rewrite the whole code snippet with only one
or two lines changing, highlighting only the code snippets that
has changed in the answer is very helpful.”

• “It is sometimes hard to identify the exact line that is incorrect. If
there is no accepted answer, it is far more challenging to identify
an appropriate solution. I recommend highlighting anything in the
question that explains: this is what is going wrong. Then, in the
answer, this is the change you need to make and why.”

In response to question (2), all participants agreed that the code
highlights could help them understand the problem and choose
a potential solution. Specifically, 14 out of 25 (56%) participants
indicated ‘Very useful’, 8 out of 25 (32%) indicated ‘Useful’, and the
remaining 3 out of 25 (12%) indicated ‘Somewhat useful’. We plan
to conduct a short interview with each participant to gain more
insights and incorporate their feedback in designing our approach.

5 CONCLUSION AND FUTUREWORK
This paper presents a natural language-based approach to extract
informative code segments, i.e., problematic and suggested code
pairs from an individual Stack Overflow post. First, we use linguistic
patterns to determine the location of suggested code in an answer.
Next, we use text similarity heuristics to identify problematic code
from the question. The goal of this research is to investigate the
feasibility of designing a highlighting tool or a browser extension
that can draw the reader’s attention to the relevant parts of a post,
and pinpoint targeted code fixes. Our preliminary pilot survey
suggests that designing such a highlighting interface would be
useful for developers in understanding the problem and choosing a
solution that is relevant to their tasks.

REFERENCES
[1] Steven P. Abney. 1992. Parsing By Chunks. Springer Netherlands, Dordrecht,

257–278. https://doi.org/10.1007/978-94-011-3474-3_10
[2] S. Beyer and M. Pinzger. 2015. Synonym Suggestion for Tags on Stack Overflow.

In 2015 IEEE 23rd International Conference on Program Comprehension. 94–103.
https://doi.org/10.1109/ICPC.2015.18

[3] Steven Bird, Ewan Klein, and Edward Loper. 2009. Natural language processing
with Python: analyzing text with the natural language toolkit. " O’Reilly Media,
Inc.".

[4] P. Chatterjee, K. Damevski, L. Pollock, V. Augustine, and N.A. Kraft. 2019. Ex-
ploratory Study of Slack Q&A Chats as a Mining Source for Software Engineering
Tools. In Proceedings of the 16th International Conference onMining Software Repos-
itories (MSR’19) (Montreal, Canada). https://doi.org/10.1109/MSR.2019.00075

[5] Preetha Chatterjee, Minji Kong, and Lori Pollock. 2020. Finding Help with
Programming Errors: An Exploratory Study of Novice Software Engineers’ Focus
in Stack Overflow Posts. Journal of Systems and Software 159 (2020), 110454.
https://doi.org/10.1016/j.jss.2019.110454

[6] Stack Exchange Data Explorer. 2021. https://data.stackexchange.com//.
[7] Q. Gao, H. Zhang, J. Wang, Y. Xiong, L. Zhang, and H. Mei. 2015. Fixing Recurring

Crash Bugs via Analyzing Q&A Sites (T). In 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE). 307–318. https://doi.org/
10.1109/ASE.2015.81

[8] Swapna Gottipati, David Lo, and Jing Jiang. 2011. Finding Relevant Answers
in Software Forums. In Proceedings of the 2011 26th IEEE/ACM International
Conference on Automated Software Engineering (ASE ’11). IEEE Computer Society,
Washington, DC, USA, 323–332. https://doi.org/10.1109/ASE.2011.6100069

[9] Zhixing Li, Tao Wang, Yang Zhang, Yun Zhan, and Gang Yin. 2016. Query
Reformulation by Leveraging CrowdWisdom for Scenario-based Software Search.
In Proceedings of the 8th Asia-Pacific Symposium on Internetware (Beijing, China)
(Internetware ’16). ACM, New York, NY, USA, 36–44. https://doi.org/10.1145/
2993717.2993723

[10] Alessandro Murgia, Daan Janssens, Serge Demeyer, and Bogdan Vasilescu. 2016.
Among the Machines: Human-Bot Interaction on Social Q&A Websites. In
Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in
Computing Systems (San Jose, California, USA) (CHI EA ’16). ACM, New York,
NY, USA, 1272–1279. https://doi.org/10.1145/2851581.2892311

[11] Sarah Nadi and Christoph Treude. 2020. Essential Sentences for Navigating
Stack Overflow Answers. In 2020 IEEE 27th International Conference on Software
Analysis, Evolution and Reengineering (SANER). 229–239. https://doi.org/10.1109/
SANER48275.2020.9054828

[12] L. Nie, H. Jiang, Z. Ren, Z. Sun, and X. Li. 2016. Query Expansion Based on Crowd
Knowledge for Code Search. IEEE Transactions on Services Computing 9, 5 (Sept
2016), 771–783. https://doi.org/10.1109/TSC.2016.2560165

[13] L. Ponzanelli, A. Mocci, A. Bacchelli, M. Lanza, and D. Fullerton. 2014. Improving
Low Quality Stack Overflow Post Detection. In 2014 IEEE International Conference
on Software Maintenance and Evolution. 541–544.

[14] Per Runeson, Martin Host, Austen Rainer, and Bjorn Regnell. 2012. Case Study
Research in Software Engineering: Guidelines and Examples (1st ed.). Wiley Pub-
lishing.

[15] A. K. Saha, R. K. Saha, and K. A. Schneider. 2013. A Discriminative Model
Approach for Suggesting Tags Automatically for Stack Overflow Questions. In
2013 10th Working Conference on Mining Software Repositories (MSR). 73–76.
https://doi.org/10.1109/MSR.2013.6624009

[16] Andrea Di Sorbo, Sebastiano Panichella, Corrado A. Visaggio, Massimiliano Di
Penta, Gerardo Canfora, and Harald C. Gall. 2015. Development Emails Content
Analyzer: Intention Mining in Developer Discussions (T). In Proceedings of the
2015 30th IEEE/ACM International Conference on Automated Software Engineering
(ASE) (ASE ’15). IEEE Computer Society, Washington, DC, USA, 12–23. https:
//doi.org/10.1109/ASE.2015.12

[17] Jia Tong, Li Ying, Tang Hongyan, and Wu Zhonghai. 2016. Can We Use Program-
mer’s Knowledge? Fixing Parameter Configuration Errors in Hadoop through
Analyzing Q amp;A Sites. In 2016 IEEE International Congress on Big Data (BigData
Congress). 478–484. https://doi.org/10.1109/BigDataCongress.2016.73

[18] B. Xu, Z. Xing, X. Xia, and D. Lo. 2017. AnswerBot: Automated generation of
answer summary to developers’ technical questions. In 2017 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE). 706–716.

[19] Bowen Xu, Zhenchang Xing, Xin Xia, and David Lo. 2017. AnswerBot: Auto-
mated Generation of Answer Summary to Developersź Technical Questions. In
Proceedings of the 32Nd IEEE/ACM International Conference on Automated Software
Engineering (Urbana-Champaign, IL, USA) (ASE 2017). IEEE Press, Piscataway,
NJ, USA, 706–716. http://dl.acm.org/citation.cfm?id=3155562.3155650

[20] Yuan Yao, Hanghang Tong, Tao Xie, Leman Akoglu, Feng Xu, and Jian Lu. 2015.
Detecting High-quality Posts in Community Question Answering Sites. Inf. Sci.
302, C (May 2015), 70–82. https://doi.org/10.1016/j.ins.2014.12.038

[21] Y. Zhang and D. Hou. 2013. Extracting problematic API features from forum
discussions. In 2013 21st International Conference on Program Comprehension
(ICPC). 142–151. https://doi.org/10.1109/ICPC.2013.6613842

https://doi.org/10.1007/978-94-011-3474-3_10
https://doi.org/10.1109/ICPC.2015.18
https://doi.org/10.1109/MSR.2019.00075
https://doi.org/10.1016/j.jss.2019.110454
https://data.stackexchange.com//
https://doi.org/10.1109/ASE.2015.81
https://doi.org/10.1109/ASE.2015.81
https://doi.org/10.1109/ASE.2011.6100069
https://doi.org/10.1145/2993717.2993723
https://doi.org/10.1145/2993717.2993723
https://doi.org/10.1145/2851581.2892311
https://doi.org/10.1109/SANER48275.2020.9054828
https://doi.org/10.1109/SANER48275.2020.9054828
https://doi.org/10.1109/TSC.2016.2560165
https://doi.org/10.1109/MSR.2013.6624009
https://doi.org/10.1109/ASE.2015.12
https://doi.org/10.1109/ASE.2015.12
https://doi.org/10.1109/BigDataCongress.2016.73
http://dl.acm.org/citation.cfm?id=3155562.3155650
https://doi.org/10.1016/j.ins.2014.12.038
https://doi.org/10.1109/ICPC.2013.6613842

	Abstract
	1 Introduction
	2 Motivating Examples
	3 Methodology
	3.1 Data Selection
	3.2 Identification of Problematic and Suggested Code Pairs from Answer
	3.3 Identification of Problematic Code from Question and Suggested Code from Answer

	4 Evaluation: Preliminary Survey
	5 Conclusion and Future Work
	References

